Red neuronal profunda optimizada para la clasificación de psoriasis de alta precisión a partir de imágenes dermatoscópicas

Autores/as

DOI:

https://doi.org/10.51252/rcsi.v5i2.996

Palabras clave:

enfermedad de la piel, memoria a corto plazo, psoriasis, red eficiente

Resumen

La clasificación precisa de la psoriasis es crucial en el diagnóstico dermatológico debido a las diversas presentaciones clínicas de la enfermedad y sus distintos niveles de gravedad. Con numerosos subtipos y sus similitudes visuales con otras afecciones dermatológicas, un diagnóstico preciso generalmente requiere conocimientos médicos especializados. La identificación temprana y precisa de los subtipos de psoriasis es esencial para iniciar un tratamiento oportuno. Este estudio presenta una novedosa arquitectura híbrida de aprendizaje profundo que integra EfficientNet con redes de memoria a largo plazo (LSTM) para la clasificación automatizada de la psoriasis a partir de imágenes dermatoscópicas. El modelo propuesto está diseñado para capturar simultáneamente características espaciales mediante EfficientNet y patrones temporales o secuenciales mediante unidades LSTM, mejorando así el rendimiento de la clasificación. Los modelos se entrenan y prueban en un conjunto de datos de referencia público que comprende siete clases distintas, utilizando el conjunto de datos de referencia disponible públicamente de Dermnet y BFL-NTU. Los resultados experimentales demuestran que la arquitectura propuesta supera significativamente a los modelos de referencia, como VGG16 y ResNet50, con una precisión superior del 89,7% y un rendimiento robusto en métricas como la recuperación, la puntuación F1 del 88% y la región de convergencia (ROC) del 97%. Este diseño compacto, con bajos parámetros de entrenamiento, reduce el tiempo de cálculo y la memoria, lo que lo hace ideal para su implementación en dispositivos portátiles y permite evaluaciones dermatológicas móviles en tiempo real.

Citas

Abbas, M., Arslan, M., Yousaf, F., & Khan, A. A. (2024). Enhanced Skin Disease Diagnosis through Convolutional Neural Networks and Data Augmentation Techniques. Journal of Computing & Biomedical Informatics, 7(1). https://doi.org/http://dx.doi.org/10.56979/701/2024

Adegun, A. A., & Viriri, S. (2020). FCN-Based DenseNet Framework for Automated Detection and Classification of Skin Lesions in Dermoscopy Images. IEEE Access, 8, 150377–150396. https://doi.org/10.1109/ACCESS.2020.3016651 DOI: https://doi.org/10.1109/ACCESS.2020.3016651

Ahmmed, F., Zaheer Raihan, Kamnur Nahar, Asadujjaman, D. M., Mahfujur Rahman, & Abdullah Tamim. (2025). Skin Disease Detection and Classification of Actinic Keratosis and Psoriasis Utilizing Deep Transfer Learning. ArXiv Preprint. https://doi.org/https://doi.org/10.48550/arXiv.2501.13713

Aijaz, S. F., Khan, S. J., Azim, F., Shakeel, C. S., & Hassan, U. (2022). Deep Learning Application for Effective Classification of Different Types of Psoriasis. Journal of Healthcare Engineering, 2022, 1–12. https://doi.org/10.1155/2022/7541583 DOI: https://doi.org/10.1155/2022/7541583

Aishwarya, U., Daniel, I. J., & Raghul, R. (2020). Convolutional Neural Network based Skin Lesion Classification and Identification. 2020 International Conference on Inventive Computation Technologies (ICICT), 264–270. https://doi.org/10.1109/ICICT48043.2020.9112485 DOI: https://doi.org/10.1109/ICICT48043.2020.9112485

Ayad, H., & Ismail, T. (2020). An Efficient Detection Framework for Linear Skin Lesions with Pigmentary Disorders. 2020 30th International Conference on Computer Theory and Applications (ICCTA), 128–133. https://doi.org/10.1109/ICCTA52020.2020.9477657 DOI: https://doi.org/10.1109/ICCTA52020.2020.9477657

Azam, S. N. Z. N., Zakaria, N. H., Hassan, R., & Zulkifle, F. A. (2022). Classification of Psoriasis Microarray Data using Machine Learning. 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), 245–249. https://doi.org/10.1109/ICICyTA57421.2022.10038180 DOI: https://doi.org/10.1109/ICICyTA57421.2022.10038180

Bolia, C., & Joshi, S. (2024). A Comparative Study of Convolutional Neural Network Architecture for Efficient Classification of Psoriasis Disease (pp. 157–171). https://doi.org/10.1007/978-981-97-4533-3_12 DOI: https://doi.org/10.1007/978-981-97-4533-3_12

DermNetNZ website. (2022). Image Library. https://dermnetnz.org/image-library

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056 DOI: https://doi.org/10.1038/nature21056

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5–6), 602–610. https://doi.org/10.1016/j.neunet.2005.06.042 DOI: https://doi.org/10.1016/j.neunet.2005.06.042

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924 DOI: https://doi.org/10.1109/TNNLS.2016.2582924

Griffiths, C. E., & Barker, J. N. (2007). Pathogenesis and clinical features of psoriasis. The Lancet, 370(9583), 263–271. https://doi.org/10.1016/S0140-6736(07)61128-3 DOI: https://doi.org/10.1016/S0140-6736(07)61128-3

Hammad, M., Pławiak, P., ElAffendi, M., El-Latif, A. A. A., & Latif, A. A. A. (2023). Enhanced Deep Learning Approach for Accurate Eczema and Psoriasis Skin Detection. Sensors, 23(16), 7295. https://doi.org/10.3390/s23167295 DOI: https://doi.org/10.3390/s23167295

Huang, C., Yu, A., Wang, Y., & He, H. (2020). Skin Lesion Segmentation Based on Mask R-CNN. 2020 International Conference on Virtual Reality and Visualization (ICVRV), 63–67. https://doi.org/10.1109/ICVRV51359.2020.00024 DOI: https://doi.org/10.1109/ICVRV51359.2020.00024

Jagannathan, V., Priya, R., Sundararajan, V., & Banu, M. (2024). CNN–BiGRU-based hybrid deep learning model for dermatological disease classification. https://doi.org/https://doi.org/10.1016/j.jbi.2024.104006

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386 DOI: https://doi.org/10.1145/3065386

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Li, X., & Kong, A. W. K. (2017). A multi-model restoration algorithm for recovering blood vessels in skin images. Image and Vision Computing, 61, 40–53. https://doi.org/10.1016/j.imavis.2017.02.006 DOI: https://doi.org/10.1016/j.imavis.2017.02.006

Lowes, M. A., Bowcock, A. M., & Krueger, J. G. (2007). Pathogenesis and therapy of psoriasis. Nature, 445(7130), 866–873. https://doi.org/10.1038/nature05663 DOI: https://doi.org/10.1038/nature05663

Peng, L., Na, Y., Changsong, D., Sheng, L. I., & Hui, M. (2021). Research on classification diagnosis model of psoriasis based on deep residual network. Digital Chinese Medicine, 4(2), 92–101. https://doi.org/10.1016/j.dcmed.2021.06.003 DOI: https://doi.org/10.1016/j.dcmed.2021.06.003

Pham, T.-C., Doucet, A., Luong, C.-M., Tran, C.-T., & Hoang, V.-D. (2020). Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation. IEEE Access, 8, 150725–150737. https://doi.org/10.1109/ACCESS.2020.3016653 DOI: https://doi.org/10.1109/ACCESS.2020.3016653

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510–4520. https://doi.org/10.1109/CVPR.2018.00474 DOI: https://doi.org/10.1109/CVPR.2018.00474

Singh, A., Verma, N., & Shukla, S. (2023). Deep learning framework for psoriasis detection using VGG and Inception models.

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 97, 6105–6114. https://doi.org/http://dx.doi.org/10.48550/arXiv.1905.11946

Wang, J., Zhang, Y., Xie, F., & Liu, J. (2025). Enhancing Diagnosis of Psoriasis and Inflammatory Skin Diseases: A Spatially Aligned Multimodal Model Integrating Clinical and Dermoscopic Images. Journal of Investigative Dermatology. https://doi.org/10.1016/j.jid.2025.03.034 DOI: https://doi.org/10.1016/j.jid.2025.03.034

Wijesinghe, L., Kulasekera, D., & Ilmini, W. (2019). An Intelligent Approach to Segmentation and Classification of Common Skin Diseases in Sri Lanka. 2019 National Information Technology Conference (NITC), 47–52. https://doi.org/10.1109/NITC48475.2019.9114507 DOI: https://doi.org/10.1109/NITC48475.2019.9114507

Yang, Y., Wang, J., Xie, F., Liu, J., Shu, C., Wang, Y., Zheng, Y., & Zhang, H. (2021). A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists. Computers in Biology and Medicine, 139, 104924. https://doi.org/10.1016/j.compbiomed.2021.104924 DOI: https://doi.org/10.1016/j.compbiomed.2021.104924

Zhu, W., Lai, H., Zhang, H., Zhang, G., Luo, Y., Wang, J., Sun, L., Lu, J., Wang, S., & Xiang, Y. (2024). Abscissa-Ordinate Focused Network for Psoriasis and Eczema Healthcare Cyber-Physical System With Active Label Smoothing. IEEE Access, 12, 54953–54963. https://doi.org/10.1109/ACCESS.2024.3384310 DOI: https://doi.org/10.1109/ACCESS.2024.3384310

Descargas

Publicado

2025-07-20

Cómo citar

Bolia, C., & Joshi , S. (2025). Red neuronal profunda optimizada para la clasificación de psoriasis de alta precisión a partir de imágenes dermatoscópicas . Revista Científica De Sistemas E Informática, 5(2), e966. https://doi.org/10.51252/rcsi.v5i2.996