Measuring the emotional charge: Analysis of the emotions present in the content of tweets about COVID-19 in Lima


  • Luis Alberto Holgado-Apaza Universidad Nacional Amazónica de Madre de Dios
  • Coren Luhana Ancco-Calloapaza Universidad Nacional de San Agustín
  • Octavio Bedregal-Flores Universidad Nacional de San Agustín
  • Marleny Quispe-Layme Universidad Nacional Amazónica de Madre de Dios
  • Ralph Miranda-Castillo Universidad Nacional Amazónica de Madre de Dios



BERT, BETO, emotions, covid-19, PLN


During the state of emergency and quarantines implemented by world leaders, there has been a significant increase in people's activity on social networks, such as Twitter, where they share opinions and emotionally charged news. In this study, we present a visualization tool for sentiment analysis in tweets related to COVID-19 in the city of Lima, Peru, during the year 2020. For this purpose, we train a BERT model called BETO, specifically designed for natural language processing in Spanish. We used the SenWave dataset, comprising 11 emotions, to train the model. Subsequently, we validate the model using a dataset composed of 33,770 tweets collected in the city of Lima, Peru. The result of our study is an interactive dashboard showing the flow of sentiments expressed in the analyzed tweets. Our findings reveal that the three most frequent emotions during 2020 were: humor, boredom and optimism. In addition, we identified the five most popular words used in the tweets: contagion, health, distancing, isolation and Martín Vizcarra, referring to the former president of Peru.


Download data is not yet available.


Alturayeif, N., & Luqman, H. (2021). Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function. Applied Sciences, 11(22), 10694.

Aygun, I., Kaya, B., & Kaya, M. (2022). Aspect Based Twitter Sentiment Analysis on Vaccination and Vaccine Types in COVID-19 Pandemic With Deep Learning. IEEE Journal of Biomedical and Health Informatics, 26(5), 2360–2369.

Blanco, G., & Lourenço, A. (2022). Optimism and pessimism analysis using deep learning on COVID-19 related twitter conversations. Information Processing & Management, 59(3), 102918.

Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., &, & Pérez, J. (2020). Spanish Pre-Trained BERT Model and Evaluation Data. PML4DC at ICLR.

Caraballo Ayala, N. E., Carreño Miranda, R., & Paternina Salgado, V. A. (2021). Análisis de sentimientos en Twitter: Opiniones en Colombia de los Juegos Olímpicos 2021. Uniwersytet Śląski.

Garcia, K., & Berton, L. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101, 107057.

Imvimol, C., & Chongstitvatana, P. (2021). Sentiment analysis of messages on Twitter related to COVID-19 using deep learning approach. 2021 25th International Computer Science and Engineering Conference (ICSEC), 363–367.

IPSOS. (2020). Uso de Redes Sociales entre peruanos conectados 2020. Institut de Publique Sondage d’Opinion Secteur.

Mendoza Castillo, L. (1970). Lo que la pandemia nos enseñó sobre la educación a distancia. Revista Latinoamericana de Estudios Educativos, 50(ESPECIAL), 343–352.

Mohamed Ridhwan, K., & Hargreaves, C. A. (2021). Leveraging Twitter data to understand public sentiment for the COVID‐19 outbreak in Singapore. International Journal of Information Management Data Insights, 1(2), 100021.

Sitaula, C., Basnet, A., Mainali, A., & Shahi, T. B. (2021). Deep Learning-Based Methods for Sentiment Analysis on Nepali COVID-19-Related Tweets. Computational Intelligence and Neuroscience, 2021, 1–11.

Topbas, A., Jamil, A., Hameed, A. A., Ali, S. M., Bazai, S., & Shah, S. A. (2021). Sentiment Analysis for COVID-19 Tweets Using Recurrent Neural Network (RNN) and Bidirectional Encoder Representations (BERT) Models. 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 1–6.

Wankhade, M., & Rao, A. C. S. (2022). Opinion analysis and aspect understanding during covid-19 pandemic using BERT-Bi-LSTM ensemble method. Scientific Reports, 12(1), 17095.

Yang, Q., Alamro, H., Albaradei, S., Salhi, A., Lv, X., Ma, C., Alshehri, M., Jaber, I., Tifratene, F., Wang, W., Gojobori, T., Duarte, C. M., Gao, X., & Zhang, X. (2020). SenWave: Monitoring the Global Sentiments under the COVID-19 Pandemic.




How to Cite

Holgado-Apaza, L. A., Ancco-Calloapaza, C. L., Bedregal-Flores, O., Quispe-Layme, M., & Miranda-Castillo, R. (2023). Measuring the emotional charge: Analysis of the emotions present in the content of tweets about COVID-19 in Lima. Revista Científica De Sistemas E Informática, 3(2), e587.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.