Recognition of image patterns through an artificial vision system in MATLAB
DOI:
https://doi.org/10.51252/rcsi.v1i2.131Keywords:
Algorithm, artificial, digitalization, processing, programmingAbstract
Artificial vision is a discipline of artificial intelligence that applies image processing to pattern recognition, with the use of algorithms in controlled environments with a number of iterations in image processing. The proliferation of image capture devices has generated digital images around the world, these images contain information that should be used by public and private organizations for decision-making. The objectives were to improve pattern recognition through an artificial vision system, to measure the pattern recognition process, to implement an artificial vision system and to measure the relationship between pattern recognition and an artificial vision system. This was an applied research, of quasi-experimental type, with cross section, the population and sample of study were 8 image patterns, the technique was the verification with checklist, applied to 2 groups, a control group and an experimental group. It was concluded that the processing time for the recognition of 8 image patterns of the experimental group was 10.75 seconds and 67.75 seconds for the control group and with a degree of relationship between pattern recognition and the artificial vision system of 72%.
References
Acosta, A., Aguilar, V., Carreño, R., Patiño, M., Patiño, J., & Martinez, M. A. (2020). Nuevas tecnologías como factor de cambio ante los retos de la inteligencia artificial y la sociedad del conocimiento. Espacios, 41(5), 25. https://www.revistaespacios.com/a20v41n05/a20v41n05p25.pdf
Azueto-Ríos, Santiago-Godoy, R., Hernández-Gómez, L. E., & Hernández-Santiago, K. A. (2017). Implementación de un sistema de imagenología infrarroja para la detección vascular del antebrazo y mano. Revista Mexicana de Ingenieria Biomedica, 38(2), 479–491. https://doi.org/10.17488/RMIB.38.2.4
Delgado León, D. (2017). Diseño de un sistema de adquisición de imágenes basado en cámaras web USB y hardware reconfigurable. Revista de Ingeniería Electrónica, Automática y Comunicaciones, 38(2) 1–11. https://rielac.cujae.edu.cu/index.php/rieac/article/view/404
Feng, X., Jiang, Y., Yang, X., Du, M., & Li, X. (2019). Computer vision algorithms and hardware implementations: A survey. In Integration (Vol. 69, pp. 309–320). Elsevier B.V. https://doi.org/10.1016/j.vlsi.2019.07.005
Ge, H., & Yu, H. (2019). The application and design of neural computation in visual perception. Journal of Visual Communication and Image Representation, 59, 309–315. https://doi.org/10.1016/j.jvcir.2019.01.020
Gila, A., Bejaoui, M. A., Beltrán, G., & Jiménez, A. (2020). Rapid method based on computer vision to determine the moisture and insoluble impurities content in virgin olive oils. Food Control, 113, 107210. https://doi.org/10.1016/j.foodcont.2020.107210
Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2, 100033. https://doi.org/10.1016/j.jafr.2020.100033
Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167, 1444–1451. https://doi.org/10.1016/j.procs.2020.03.355
Kuznetsov, A. O., Gorevoy, A. V., & Machikhin, A. S. (2019). Image rectification for prism-based stereoscopic optical systems. Computer Vision and Image Understanding, 182, 30–37. https://doi.org/10.1016/j.cviu.2019.02.003
Li, L., Fei, X., Dong, Z., & Yang, T. (2020). Computer vision-based method for monitoring grain quantity change in warehouses. Grain & Oil Science and Technology, 3(3), 87–99. https://doi.org/10.1016/j.gaost.2020.06.001
Li, Y. (2020). A calibration method of computer vision system based on dual attention mechanism. Image and Vision Computing, 103, 104039. https://doi.org/10.1016/j.imavis.2020.104039
Liu, D., Oczak, M., Maschat, K., Baumgartner, J., Pletzer, B., He, D., & Norton, T. (2020). A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosystems Engineering, 195, 27–41. https://doi.org/10.1016/j.biosystemseng.2020.04.007
Marino-Vera, H., Mendoza, L. E., & Gualdrón-Guerrero, O. E. (2017). Medición automática de variables antropométricas para la evaluación de la respiración usando visión artificial. Revista de Investigación, Desarrollo e Innovación, 8(1), 161. https://doi.org/10.19053/20278306.v8.n1.2017.7407
Mujica Rodríguez, I. E., Toribio Salazar, L. M., & Cóndor Cámara, D. F. (2020). Inteligencia artificial como apoyo a intervenciones no farmacológicas para combatir la COVID-19. Revista Peruana de Medicina Experimental y Salud Pública, 37(3), 582–584. https://doi.org/10.17843/rpmesp.2020.373.5704
Pérez, M., Cavanzo Nisso, G. A., & Villavisán Buitrago, F. (2018). Sistema embebido de detección de movimiento mediante visión artificial. Visión Electrónica, 12(1), 97–101. https://doi.org/10.14483/22484728.15087
Reyes Ortiz, O. J., Mejia, M., & Useche Castelblanco, J. S. (2019). Técnicas de inteligencia artificial utilizadas en el procesamiento de imágenes y su aplicación en el análisis de pavimentos. Revista EIA, 16(31), 189–207. https://doi.org/10.24050/reia.v16i31.1215
Santos, D., Dallos, L., & Gaona-García, P. A. (2020). Motion tracking algorithms using AI and machine learning techniques. Informacion Tecnologica, 31(3), 23–38. https://doi.org/10.4067/S0718-07642020000300023
Sivkov, S., Novikov, L., Romanova, G., Romanova, A., Vaganov, D., Valitov, M., & Vasiliev, S. (2020). The algorithm development for operation of a computer vision system via the OpenCV library. Procedia Computer Science, 169, 662–667. https://doi.org/10.1016/j.procs.2020.02.193
Souza Alves, T. De, De Oliveira, C. S., Sanin, C., & Szczerbicki, E. (2018). From Knowledge based Vision Systems to Cognitive Vision Systems: A Review. Procedia Computer Science, 126, 1855–1864. https://doi.org/10.1016/j.procS.2018.08.077
Syberfeldt, A., & Vuoluterä, F. (2020). Image processing based on deep neural networks for detecting quality problems in paper bag production. Procedia CIRP, 93, 1224–1229. https://doi.org/10.1016/j.procir.2020.04.158
Wan, P., Toudeshki, A., Tan, H., & Ehsani, R. (2018). A methodology for fresh tomato maturity detection using computer vision. Computers and Electronics in Agriculture, 146, 43–50. https://doi.org/10.1016/j.compag.2018.01.011
Zhao, Z. Q., Xu, S. T., Liu, D., Tian, W. D., & Jiang, Z. Da. (2019). A review of image set classification. Neurocomputing, 335, 251–260. https://doi.org/10.1016/j.neucom.2018.09.090
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 John Clark Santa-Maria , Carlos Ríos-López, Carlos Rodríguez-Grández, Cristian García-Estrella
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Científica de Sistemas e Informática (RCSI) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the RCSI.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).