Application of deep learning in the phytosanitary detection of cocoa using computer vision

Authors

  • Jorge Raul Navarro-Cabrera Universidad de Huánuco
  • José Guillermo Beraún-Barrantes Universidad de Huánuco
  • Ángel Cárdenas-García Universidad Nacional de San Martín https://orcid.org/0000-0001-7524-1421
  • Carlos Mauricio Lozano-Carranza TUSAN Ingenieros Consultores

DOI:

https://doi.org/10.51252/rcsi.v6i1.1385

Keywords:

deep learning, automated diagnosis, classification models, plant health, artificial vision

Abstract

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision, comparing the performance of three architectures: ResNet50, EfficientNet-B0, and Vision Transformer (ViT-B/16). A reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential statistical analysis using repeated-measures ANOVA. The dataset consisted of 4,390 RGB images of cacao fruits distributed across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1-macro values above 0.96 across all architectures, with no statistically significant differences among models (F = 0.278, p = 0.7645). Training curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate that system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather than on the specific architecture employed.

Downloads

Download data is not yet available.

References

Anjali, Jena, A., Bamola, A., Mishra, S., Jain, I., Pathak, N., Sharma, N., Joshi, N., Pandey, R., Kaparwal, S., Yadav, V., Gupta, A. K., Jha, A. K., Bhatt, S., Kumar, V., Naik, B., Rustagi, S., Preet, M. S., & Akhtar, S. (2024). State-of-the-art non-destructive approaches for maturity index determination in fruits and vegetables: principles, applications, and future directions. Food Production, Processing and Nutrition, 6(1), 56. https://doi.org/10.1186/s43014-023-00205-5

Bono, A., Guaragnella, C., & D’Orazio, T. (2026). A perspective analysis of imaging-based monitoring systems in precision viticulture: Technologies, intelligent data analyses and research challenges. Artificial Intelligence in Agriculture, 16(1), 62–84. https://doi.org/10.1016/j.aiia.2025.08.001

Charry, A., Perea, C., Ramírez, K., Zambrano, G., Yovera, F., Santos, A., Jiménez, T., Romero, M., Lundy, M., Quintero, M., & Pulleman, M. (2025). The bittersweet economics of different cacao production systems in Colombia, Ecuador and Peru. Agricultural Systems, 224, 104235. https://doi.org/10.1016/j.agsy.2024.104235

Cilas, C., & Bastide, P. (2020). Challenges to Cocoa Production in the Face of Climate Change and the Spread of Pests and Diseases. Agronomy, 10(9), 1232. https://doi.org/10.3390/agronomy10091232

Deepa, R., Varun, P., Shoba, L. K., Swathy, R., & Prabhu, B. (2025). Advanced Image Processing Techniques for Precision Agriculture. In Innovations and Developments in Unmanned Aerial Vehicles (pp. 227–244). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8462-6.ch010

Delgado-Ospina, J., Molina-Hernández, J. B., Chaves-López, C., Romanazzi, G., & Paparella, A. (2021). The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. Journal of Fungi, 7(3), 202. https://doi.org/10.3390/jof7030202

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. In Cornell University. https://doi.org/https://doi.org/1512.03385

Injante, R., Rios-Trigoso, G., Ramírez-Shupingahua, S., & Tejada Shupingahua, K. (2025). Procesamiento de imágenes para la detección de la madurez del fruto: una revisión sistemática. Revista Peruana de Ingeniería, Arquitectura y Medio Ambiente, 2(1). https://doi.org/10.37711/repiama.2025.2.1.3

Kingma, J., & Ba, D. P. (2014). Adam: A Method for Stochastic Optimization. Cornell University. https://doi.org/https://doi.org/10.48550/arXiv.1412.6980

Lebrini, Y., & Ayerdi Gotor, A. (2024). Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence. Agronomy, 14(11), 2719. https://doi.org/10.3390/agronomy14112719

Magfirah, N., Sartiami, D., Niogret, J., & Ekayanti, A. (2025). Biological parameter of cocoa pod borer Conopomorpha cramerella (Lepidoptera: Gracillariidae) under laboratory conditions. IOP Conference Series: Earth and Environmental Science, 1494(1), 012020. https://doi.org/10.1088/1755-1315/1494/1/012020

Mall, P. K., Singh, P. K., Srivastav, S., Narayan, V., Paprzycki, M., Jaworska, T., & Ganzha, M. (2023). A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthcare Analytics, 4, 100216. https://doi.org/10.1016/j.health.2023.100216

Miyittah, M. K., Kosivi, R. K., Tulashie, S. K., Addi, M. N., & Tawiah, J. Y. (2022). The need for alternative pest management methods to mitigate risks among cocoa farmers in the Volta region, Ghana. Heliyon, 8(12), e12591. https://doi.org/10.1016/j.heliyon.2022.e12591

Paparella, A., Schirone, M., & López, C. C. (2025). The Health Impact of Cocoa from Cultivation to the Formation of Biogenic Amines: An Updated Review. Foods, 14(2), 255. https://doi.org/10.3390/foods14020255

Polania Bello, V. (2023). Diagnosis of the agronomic and phytosanitary management practices of cocoa producers in San José del Fragua: the case of the Cerafín Garcia property. Environmental Research and Ecotoxicity, 2, 55. https://doi.org/10.56294/ere202355

Puig, A. S., Irish, B., Ayala-Silva, T., Wurzel, S., & Gutierrez, O. (2022). Effect of Cacao Black Pod Rot Screening Method on Disease Reaction Determination. The 1st International Online Conference on Agriculture—Advances in Agricultural Science and Technology, 71. https://doi.org/10.3390/IOCAG2022-12215

Quintero, I., Ceccaldi, A., Martínez, H., Santander, M., Rodríguez, J., & Escobar, S. (2025). Dry cacao pulp in chocolate bars: A sustainable, nutrient-rich sweetener with enhanced sensory quality through refractance windows drying. Applied Food Research, 5(1), 100700. https://doi.org/10.1016/j.afres.2025.100700

Raj, M., & Prahadeeswaran, M. (2025). Revolutionizing agriculture: a review of smart farming technologies for a sustainable future. Discover Applied Sciences, 7(9), 937. https://doi.org/10.1007/s42452-025-07561-6

Ray, R. K., Chakravarty, S., Dash, S., Ghosh, A., Mohanty, S. N., Reddy Chirra, V. R., Ayouni, S., & Khan, M. I. (2025). Precision pest management in agriculture using Inception V3 and EfficientNet B4: A deep learning approach for crop protection. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2025.09.005

Schmidt, J. E., Puig, A. S., DuVal, A. E., & Pfeufer, E. E. (2023). Phyllosphere microbial diversity and specific taxa mediate within-cultivar resistance to Phytophthora palmivora in cacao. MSphere, 8(5). https://doi.org/10.1128/msphere.00013-23

Shafay, M., Hassan, T., Owais, M., Hussain, I., Khawaja, S. G., Seneviratne, L., & Werghi, N. (2025). Recent advances in plant disease detection: challenges and opportunities. Plant Methods, 21(1), 140. https://doi.org/10.1186/s13007-025-01450-0

Song, X., Yan, L., Liu, S., Gao, T., Han, L., Jiang, X., Jin, H., & Zhu, Y. (2025). Agricultural Image Processing: Challenges, Advances, and Future Trends. Applied Sciences, 15(16), 9206. https://doi.org/10.3390/app15169206

Taha, M. F., Mao, H., Zhang, Z., Elmasry, G., Awad, M. A., Abdalla, A., Mousa, S., Elwakeel, A. E., & Elsherbiny, O. (2025). Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture, 15(6), 582. https://doi.org/10.3390/agriculture15060582

Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Cornell University. https://doi.org/https://doi.org/10.48550/arXiv.1905.11946

Villalobos-Culqui, C., Valles-Coral, M. A., García-Rivas-Plata, C., & Tuesta-Hidalgo, O. A. (2025). Modelo de visión artificial basada en redes neuronales convolucionales para identificación de mazorca negra en plantaciones de cacao. Revista Científica de Sistemas e Informática, 5(1), e678. https://doi.org/10.51252/rcsi.v5i1.678

Vinci, G., Ruggeri, M., Gobbi, L., & Savastano, M. (2024). Social Life Cycle Assessment of Cocoa Production: Evidence from Ivory Coast and Ghana. Resources, 13(10), 141. https://doi.org/10.3390/resources13100141

Wang, Y., Deng, Y., Zheng, Y., Chattopadhyay, P., & Wang, L. (2025). Vision Transformers for Image Classification: A Comparative Survey. Technologies, 13(1), 32. https://doi.org/10.3390/technologies13010032

Waqas, M., Naseem, A., Humphries, U. W., Hlaing, P. T., Dechpichai, P., & Wangwongchai, A. (2025). Applications of machine learning and deep learning in agriculture: A comprehensive review. Green Technologies and Sustainability, 3(3), 100199. https://doi.org/10.1016/j.grets.2025.100199

Wu, K., Ji, Z., Wang, H., Shao, X., Li, H., Zhang, W., Kong, W., Xia, J., & Bao, X. (2025). A Comprehensive Review of AI Methods in Agri-Food Engineering: Applications, Challenges, and Future Directions. Electronics, 14(20), 3994. https://doi.org/10.3390/electronics14203994

Zahlul Ikhsan, Muhammad Al-Ikhlas, Yaherwandi, Hasmiandy Hamid, Aulia Oktavia, & Dandy Ahamefula Osibe. (2024). Level of Pest Infestation on Cocoa (Theobroma cacao L.) Variety BL-50 in Tanah Datar Regency, West Sumatera Province, Indonesia. Andalasian International Journal of Entomology, 2(1), 38–47. https://doi.org/10.25077/aijent.2.1.38-47.2024

Published

2026-01-20

How to Cite

Navarro-Cabrera, J. R., Beraún-Barrantes, J. G., Cárdenas-García, Ángel, & Lozano-Carranza, C. M. (2026). Application of deep learning in the phytosanitary detection of cocoa using computer vision. Revista Científica De Sistemas E Informática, 6(1), e1385. https://doi.org/10.51252/rcsi.v6i1.1385