Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs

Authors

DOI:

https://doi.org/10.51252/rcsi.v5i2.955

Keywords:

artificial intelligence, biomedical videos, clinical dataset, computer vision, hemoglobin, machine learning, non-invasive detection

Abstract

Iron deficiency anemia affects a significant proportion of the young population in both rural and urban areas of Peru. In response to the need for non-invasive, accessible, and reproducible methods for its detection, we developed this dataset as part of a research project funded by the Universidad Nacional de San Martín, which applies computer vision techniques to automatically classify patients as anemic or non-anemic. The aim is to provide a standardized base of videos and images that supports the development and validation of classification and regression models to estimate hemoglobin levels without the need for blood extraction. This data paper presents a multimodal dataset composed of non-invasive visual records collected to facilitate the detection of iron deficiency anemia in young adults through machine learning models. The dataset includes 909 fingertip videos, 909 palm videos (with controlled hand opening), and 909 nail photographs, all linked to individual clinical data such as age, sex, hemoglobin level, and symptomatology.

References

Alkhaldy, H., Hadi, R., Alghamdi, K., Alqahtani, S., Al Jabbar, I. H., Al Ghamdi, I., Bakheet, O. E., Saleh, R. M., Shehata, S., & Aziz, S. (2020). The pattern of iron deficiency with and without anemia among medical college girl students in high altitude southern Saudi Arabia. Journal of Family Medicine and Primary Care, 9(9), 5018. https://doi.org/10.4103/jfmpc.jfmpc_730_20 DOI: https://doi.org/10.4103/jfmpc.jfmpc_730_20

An, R., Huang, Y., Man, Y., Valentine, R. W., Kucukal, E., Goreke, U., Sekyonda, Z., Piccone, C., Owusu-Ansah, A., Ahuja, S., Little, J. A., & Gurkan, U. A. (2021). Emerging point-of-care technologies for anemia detection. Lab on a Chip, 21(10), 1843–1865. https://doi.org/10.1039/D0LC01235A DOI: https://doi.org/10.1039/D0LC01235A

Chakraborty, J., Majumder, S., & Menzies, T. (2021). Bias in machine learning software: why? how? what to do? Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 429–440. https://doi.org/10.1145/3468264.3468537 DOI: https://doi.org/10.1145/3468264.3468537

Del Castillo, L., Cardona-Castro, N., Whelan, D. R., Builes, J. P., Serrano-Coll, H., Arboleda, M., & Leon, J. S. (2023). Prevalence and risk factors of anemia in the mother–child population from a region of the Colombian Caribbean. BMC Public Health, 23(1), 1533. https://doi.org/10.1186/s12889-023-16475-0 DOI: https://doi.org/10.1186/s12889-023-16475-0

Khani Jeihooni, A., Hoshyar, S., Afzali Harsini, P., & Rakhshani, T. (2021). The effect of nutrition education based on PRECEDE model on iron deficiency anemia among female students. BMC Women’s Health, 21(1), 256. https://doi.org/10.1186/s12905-021-01394-2 DOI: https://doi.org/10.1186/s12905-021-01394-2

Navarro-Cabrera, J. R., Valles-Coral, M. A., Farro-Roque, M. E., Reátegui-Lozano, N., & Arévalo-Fasanando, L. (2025). Machine vision model using nail images for non-invasive detection of iron deficiency anemia in university students. Frontiers in Big Data, 8. https://doi.org/10.3389/fdata.2025.1557600 DOI: https://doi.org/10.3389/fdata.2025.1557600

Perez-Plazola, M. S., Tyburski, E. A., Smart, L. R., Howard, T. A., Pfeiffer, A., Ware, R. E., Lam, W. A., & McGann, P. T. (2020). AnemoCheck-LRS: an optimized, color-based point-of-care test to identify severe anemia in limited-resource settings. BMC Medicine, 18(1), 337. https://doi.org/10.1186/s12916-020-01793-6 DOI: https://doi.org/10.1186/s12916-020-01793-6

Prieto-Patron, A., V. Hutton, Z., Fattore, G., Sabatier, M., & Detzel, P. (2020). Reducing the burden of iron deficiency anemia in Cote D’Ivoire through fortification. Journal of Health, Population and Nutrition, 39(1), 1. https://doi.org/10.1186/s41043-020-0209-x DOI: https://doi.org/10.1186/s41043-020-0209-x

Quiliche Castañeda, R. B., Turpo-Chaparro, J., Torres, J. H., Saintila, J., & Ruiz Mamani, P. G. (2021). Overweight and Obesity, Body Fat, Waist Circumference, and Anemia in Peruvian University Students: A Cross-Sectional Study. Journal of Nutrition and Metabolism, 2021, 1–9. https://doi.org/10.1155/2021/5049037 DOI: https://doi.org/10.1155/2021/5049037

Valles-Coral, M. A., Navarro-Cabrera, J. R., Pinedo, L., Injante, R., Quintanilla-Morales, L. K., & Farro-Roque, M. E. (2024). Non-Invasive Detection of Iron Deficiency Anemia in Young Adults Through Finger-Tip Video Image Analysis. International Journal of Online and Biomedical Engineering (IJOE), 20(14), 53–70. https://doi.org/10.3991/ijoe.v20i14.50141 DOI: https://doi.org/10.3991/ijoe.v20i14.50141

Williams Asare, J., Appiahene, P., Timmy Donkoh, E., & Dimauro, G. (2023). Iron deficiency anemia detection using machine learning models: A comparative study of fingernails, palm and conjunctiva of the eye images. Engineering Reports, e12667. https://doi.org/10.1002/ENG2.12667 DOI: https://doi.org/10.22541/au.167570558.82410707/v1

World Health Organization. (2021). Anaemia in women and children. The Global Healt Observatory. https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children

Published

2025-07-20

How to Cite

Valles-Coral, M. A., Injante, R., Navarro-Cabrera, J. R., Pinedo, L., Salazar-Ramirez, L. G., Farro-Roque, M. E., & Quintanilla-Morales, L. K. (2025). Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs . Revista Científica De Sistemas E Informática, 5(2), e955. https://doi.org/10.51252/rcsi.v5i2.955