Artificial intelligence in enhancing human talent and knowledge management in organizations: a systematic review in Scopus
DOI:
https://doi.org/10.51252/rcsi.v5i1.889Keywords:
business management, knowledge automation, performance evaluation, technological innovation, workforce optimizationAbstract
This study analyzes the application of artificial intelligence (AI) in talent management and organizational knowledge through a systematic review of 50 scientific articles indexed in Scopus. A documentary review methodology was employed, with selection criteria based on relevance and recent contributions. The main AI applications identified include the optimization of administrative processes, the personalization of training programs, and data-driven strategic decision-making. Key approaches analyzed include machine learning, data mining, and expert systems, which have improved performance evaluation, personnel selection, and knowledge management. The results indicate that AI has increased efficiency in talent management, though challenges persist, such as data quality, organizational resistance, and biases in selection algorithms. The study concludes that AI adoption in human resources continues to grow, promoting more adaptive management models. However, it is essential to address its limitations through regulatory frameworks and oversight strategies to ensure an ethical, fair, and goal-aligned implementation within organizations.
References
Al-Faouri, E. H., Abu Huson, Y., Aljawarneh, N. M., & Alqmool, T. jamil. (2024). The Role of Smart Human Resource Management in the Relationship between Technology Application and Innovation Performance. Sustainability, 16(11), 4747. https://doi.org/10.3390/su16114747 DOI: https://doi.org/10.3390/su16114747
Alam, M. S., Munira, K. S., Rahman, M. S., Uddin, M. A., & Akter, A. (2022). Artificial Intelligence (AI) for Talent Acquisition: Human Resource Professionals’ Perspective. International Journal of Human Capital and Information Technology Professionals, 13(1). https://doi.org/10.4018/IJHCITP.303950 DOI: https://doi.org/10.4018/IJHCITP.303950
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). Methodological Approach to Assessing the Current State of Organizations for AI-Based Digital Transformation. Applied System Innovation, 7(1), 14. https://doi.org/10.3390/asi7010014 DOI: https://doi.org/10.3390/asi7010014
Ammer, M. A., Ahmed, Z. A. T., Alsubari, S. N., Aldhyani, T. H. H., & Almaaytah, S. A. (2023). Application of Artificial Intelligence for Better Investment in Human Capital. Mathematics, 11(3). https://doi.org/10.3390/math11030612 DOI: https://doi.org/10.3390/math11030612
Aydın, E., & Turan, M. (2023). An AI-Based Shortlisting Model for Sustainability of Human Resource Management. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032737 DOI: https://doi.org/10.3390/su15032737
Bhupathi, P., Prabu, S., & Goh, A. P. I. (2023). Artificial intelligence-enabled knowledge management using a multidimensional analytical framework of visualizations. International Journal of Cognitive Computing in Engineering, 4, 240–247. https://doi.org/10.1016/j.ijcce.2023.06.003 DOI: https://doi.org/10.1016/j.ijcce.2023.06.003
Cai, C., & Chen, C. (2021). Optimization of Human Resource File Information Decision Support System Based on Cloud Computing. Complexity, 2021. https://doi.org/10.1155/2021/8919625 DOI: https://doi.org/10.1155/2021/8919625
Cao, C., & Zhang, Z. (2022). Machine Learning-Assisted Competency Modeling for Human Resource Management Jobs. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/8380307 DOI: https://doi.org/10.1155/2022/8380307
Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX, 9, 101895. https://doi.org/10.1016/j.mex.2022.101895 DOI: https://doi.org/10.1016/j.mex.2022.101895
Chang, K. (2020). Artificial intelligence in personnel management: the development of APM model. Bottom Line, 33(4), 377–388. https://doi.org/10.1108/BL-08-2020-0055 DOI: https://doi.org/10.1108/BL-08-2020-0055
Chaudhary, M., Gaur, L., Jhanjhi, N. Z., Masud, M., & Aljahdali, S. (2022). Envisaging Employee Churn Using MCDM and Machine Learning. Intelligent Automation and Soft Computing, 33(2), 1009–1024. https://doi.org/10.32604/iasc.2022.023417 DOI: https://doi.org/10.32604/iasc.2022.023417
Chen, W., & Du, C. (2022). Human Resource Decision-Making and Recommendation Based on Hadoop Distributed Big Data Platform. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/8325677 DOI: https://doi.org/10.1155/2022/8325677
Chen, Z. (2023a). Artificial Intelligence-Virtual Trainer: Innovative Didactics Aimed at Personalized Training Needs. Journal of the Knowledge Economy, 14(2), 2007–2025. https://doi.org/10.1007/s13132-022-00985-0 DOI: https://doi.org/10.1007/s13132-022-00985-0
Chen, Z. (2023b). Collaboration among recruiters and artificial intelligence: removing human prejudices in employment. Cognition, Technology and Work, 25(1), 135–149. https://doi.org/10.1007/s10111-022-00716-0 DOI: https://doi.org/10.1007/s10111-022-00716-0
Chigbu, U. E., Atiku, S. O., & Du Plessis, C. C. (2023). The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising. Publications, 11(1), 2. https://doi.org/10.3390/publications11010002 DOI: https://doi.org/10.3390/publications11010002
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2022.100899 DOI: https://doi.org/10.1016/j.hrmr.2022.100899
Ekuma, K. (2024). Artificial Intelligence and Automation in Human Resource Development: A Systematic Review. Human Resource Development Review, 23(2), 199–229. https://doi.org/10.1177/15344843231224009 DOI: https://doi.org/10.1177/15344843231224009
Fallucchi, F., Coladangelo, M., Giuliano, R., & De Luca, E. W. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 1–17. https://doi.org/10.3390/computers9040086 DOI: https://doi.org/10.3390/computers9040086
Fernandes França, T. J., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/j.heliyon.2023.e14694 DOI: https://doi.org/10.1016/j.heliyon.2023.e14694
Garrido-Moreno, A., Martín-Rojas, R., & García-Morales, V. J. (2024). The key role of innovation and organizational resilience in improving business performance: A mixed-methods approach. International Journal of Information Management, 77, 102777. https://doi.org/10.1016/j.ijinfomgt.2024.102777 DOI: https://doi.org/10.1016/j.ijinfomgt.2024.102777
Giotopoulos, K. C., Michalopoulos, D., Karras, A., Karras, C., & Sioutas, S. (2023). Modelling and Analysis of Neuro Fuzzy Employee Ranking System in the Public Sector †. Algorithms, 16(3). https://doi.org/10.3390/a16030151 DOI: https://doi.org/10.3390/a16030151
Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216 DOI: https://doi.org/10.3390/educsci13121216
Gong, Y., Zhao, M., Wang, Q., & Lv, Z. (2022). Design and interactive performance of human resource management system based on artificial intelligence. PLOS ONE, 17(1), e0262398. https://doi.org/10.1371/journal.pone.0262398 DOI: https://doi.org/10.1371/journal.pone.0262398
Goswami, M., Jain, S., Alam, T., Deifalla, A. F., Ragab, A. E., & Khargotra, R. (2023). Exploring the antecedents of AI adoption for effective HRM practices in the Indian pharmaceutical sector. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1215706 DOI: https://doi.org/10.3389/fphar.2023.1215706
Graczyk-Kucharska, M., Olszewski, R., Golinski, M., Spychała, M., Szafranski, M., Weber, G. W., & Miadowicz, M. (2022). Human Resources Optimization with MARS and ANN: Innovation Geolocation Model for Generation Z. Journal of Industrial and Management Optimization, 18(6), 4093–4110. https://doi.org/10.3934/jimo.2021149 DOI: https://doi.org/10.3934/jimo.2021149
Guo, Q. (2022). A Fuzzy Comprehensive Dynamic Evaluation Algorithm for Human Resource Quality Growth Based on Artificial Intelligence. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/8402975 DOI: https://doi.org/10.1155/2022/8402975
Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, 120392. https://doi.org/10.1016/j.techfore.2020.120392 DOI: https://doi.org/10.1016/j.techfore.2020.120392
Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65, 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497 DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102497
Huang, X., Yang, F., Zheng, J., Feng, C., & Zhang, L. (2023). Personalized human resource management via HR analytics and artificial intelligence: Theory and implications. Asia Pacific Management Review, 28(4), 598–610. https://doi.org/10.1016/j.apmrv.2023.04.004 DOI: https://doi.org/10.1016/j.apmrv.2023.04.004
Hunkenschroer, A. L., & Luetge, C. (2022). Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda. Journal of Business Ethics, 178(4), 977–1007. https://doi.org/10.1007/s10551-022-05049-6 DOI: https://doi.org/10.1007/s10551-022-05049-6
Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002 DOI: https://doi.org/10.1016/j.bushor.2022.03.002
Jurāne-Brēmane, A. (2023). Digital Assessment in Technology-Enriched Education: Thematic Review. Education Sciences, 13(5), 522. https://doi.org/10.3390/educsci13050522 DOI: https://doi.org/10.3390/educsci13050522
Kocjancic, L., & Gricar, S. (2023). Usage of AI in Sustainable Knowledge Management and Innovation Processes; Data Analytics in the Electricity Sector. FinTech, 2(4), 718–736. https://doi.org/10.3390/fintech2040040 DOI: https://doi.org/10.3390/fintech2040040
Leoste, J., Õun, T., Loogma, K., & San Martín López, J. (2021). Designing training programs to introduce emerging technologies to future workers—a pilot study based on the example of artificial intelligence enhanced robotics. Mathematics, 9(22). https://doi.org/10.3390/math9222876 DOI: https://doi.org/10.3390/math9222876
Li, N., Yan, Y., Yang, Y., & Gu, A. (2022). Artificial Intelligence Capability and Organizational Creativity: The Role of Knowledge Sharing and Organizational Cohesion. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.845277 DOI: https://doi.org/10.3389/fpsyg.2022.845277
Ma, S., Xuan, S., & Liang, Y. (2022). Analysis Model of Human Resource Cross-Media Fusion Based on Deep Neural Network. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/6069589 DOI: https://doi.org/10.1155/2022/6069589
Marín Díaz, G., Galán Hernández, J. J., & Galdón Salvador, J. L. (2023). Analyzing Employee Attrition Using Explainable AI for Strategic HR Decision-Making. Mathematics, 11(22). https://doi.org/10.3390/math11224677 DOI: https://doi.org/10.3390/math11224677
Martín-Hernández, P. (2023). Artificial Intelligence: The Present and Future of Human Resources Recruitment and Selection Processes †. Engineering Proceedings, 56(1). https://doi.org/10.3390/ASEC2023-15521 DOI: https://doi.org/10.3390/ASEC2023-15521
Mihai, F., Aleca, O. E., & Gheorghe, M. (2023). Digital Transformation Based on AI Technologies in European Union Organizations. Electronics (Switzerland), 12(11). https://doi.org/10.3390/electronics12112386 DOI: https://doi.org/10.3390/electronics12112386
Mikalef, P., Lemmer, K., Schaefer, C., Ylinen, M., Fjørtoft, S. O., Torvatn, H. Y., Gupta, M., & Niehaves, B. (2023). Examining how AI capabilities can foster organizational performance in public organizations. Government Information Quarterly, 40(2). https://doi.org/10.1016/j.giq.2022.101797 DOI: https://doi.org/10.1016/j.giq.2022.101797
Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The Impact of Artificial Intelligence on Workers’ Skills: Upskilling and Reskilling in Organisations. Informing Science, 26, 39–68. https://doi.org/10.28945/5078 DOI: https://doi.org/10.28945/5078
Murire, O. T. (2024). Artificial Intelligence and Its Role in Shaping Organizational Work Practices and Culture. Administrative Sciences, 14(12), 316. https://doi.org/10.3390/admsci14120316 DOI: https://doi.org/10.3390/admsci14120316
Murugesan, U., Subramanian, P., Srivastava, S., & Dwivedi, A. (2023). A study of Artificial Intelligence impacts on Human Resource Digitalization in Industry 4.0. Decision Analytics Journal, 7. https://doi.org/10.1016/j.dajour.2023.100249 DOI: https://doi.org/10.1016/j.dajour.2023.100249
Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The adoption of artificial intelligence in human resources management practices. International Journal of Information Management Data Insights, 4(1), 100208. https://doi.org/10.1016/j.jjimei.2023.100208 DOI: https://doi.org/10.1016/j.jjimei.2023.100208
Nuseir, M. T., & Refae, G. E. (2022). The role of artificial intelligence, marketing strategies, and organizational capabilities in organizational performance: The moderating role of organizational behavior. Uncertain Supply Chain Management, 10(4), 1457–1466. https://doi.org/10.5267/j.uscm.2022.6.010 DOI: https://doi.org/10.5267/j.uscm.2022.6.010
Olan, F., Ogiemwonyi Arakpogun, E., Suklan, J., Nakpodia, F., Damij, N., & Jayawickrama, U. (2022). Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. Journal of Business Research, 145, 605–615. https://doi.org/10.1016/j.jbusres.2022.03.008 DOI: https://doi.org/10.1016/j.jbusres.2022.03.008
Özkiziltan, D., & Hassel, A. (2021). Artificial Intelligence at Work: An Overview of the Literature. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3796746 DOI: https://doi.org/10.2139/ssrn.3796746
Paigude, S., Pangarkar, S. C., Hundekari, S., Mali, M., Wanjale, K., & Dongre, Y. (2023). Potential of Artificial Intelligence in Boosting Employee Retention in the Human Resource Industry. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 1–10. https://doi.org/10.17762/ijritcc.v11i3s.6149 DOI: https://doi.org/10.17762/ijritcc.v11i3s.6149
Perifanis, N.-A., & Kitsios, F. (2023). Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information, 14(2), 85. https://doi.org/10.3390/info14020085 DOI: https://doi.org/10.3390/info14020085
Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134. https://doi.org/10.1016/j.dss.2020.113290 DOI: https://doi.org/10.1016/j.dss.2020.113290
Piardi, L., Leitão, P., Queiroz, J., & Pontes, J. (2024). Role of digital technologies to enhance the human integration in industrial cyber–physical systems. Annual Reviews in Control, 57, 100934. https://doi.org/10.1016/j.arcontrol.2024.100934 DOI: https://doi.org/10.1016/j.arcontrol.2024.100934
Pourkhodabakhsh, N., Mamoudan, M. M., & Bozorgi-Amiri, A. (2023). Effective machine learning, Meta-heuristic algorithms and multi-criteria decision making to minimizing human resource turnover. Applied Intelligence, 53(12), 16309–16331. https://doi.org/10.1007/s10489-022-04294-6 DOI: https://doi.org/10.1007/s10489-022-04294-6
Qahtani, E. H. A. L., & Alsmairat, M. A. K. (2023). Assisting artificial intelligence adoption drivers in human resources management: a mediation model. Acta Logistica, 10(1), 141–150. https://doi.org/10.22306/al.v10i1.371 DOI: https://doi.org/10.22306/al.v10i1.371
Rath, M., Mishra, N., & Jayasuria, J. G. (2023). A Smart Human Resource Approach using Artificial Intelligence with Improved Employee Satisfaction for Better Sustainability in Organisation. Evergreen, 10(4), 2476–2482. https://doi.org/10.5109/7162009 DOI: https://doi.org/10.5109/7162009
Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2022.100925 DOI: https://doi.org/10.1016/j.hrmr.2022.100925
Rožman, M., Oreški, D., & Tominc, P. (2022). Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1014434 DOI: https://doi.org/10.3389/fpsyg.2022.1014434
Rožman, M., Oreški, D., & Tominc, P. (2023). Artificial-Intelligence-Supported Reduction of Employees’ Workload to Increase the Company’s Performance in Today’s VUCA Environment. Sustainability (Switzerland), 15(6). https://doi.org/10.3390/su15065019 DOI: https://doi.org/10.3390/su15065019
Shahzad, M. F., Xu, S., Naveed, W., Nusrat, S., & Zahid, I. (2023). Investigating the impact of artificial intelligence on human resource functions in the health sector of China: A mediated moderation model. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21818 DOI: https://doi.org/10.1016/j.heliyon.2023.e21818
Shrestha, Y. R., Krishna, V., & von Krogh, G. (2021). Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges. Journal of Business Research, 123, 588–603. https://doi.org/10.1016/j.jbusres.2020.09.068 DOI: https://doi.org/10.1016/j.jbusres.2020.09.068
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039 DOI: https://doi.org/10.1016/j.jbusres.2019.07.039
Soori, M., Jough, F. K. G., Dastres, R., & Arezoo, B. (2024). AI-Based Decision Support Systems in Industry 4.0, A Review. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.08.005 DOI: https://doi.org/10.1016/j.ject.2024.08.005
Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., Selwyn, N., & Gašević, D. (2022). Assessment in the age of artificial intelligence. Computers and Education: Artificial Intelligence, 3, 100075. https://doi.org/10.1016/j.caeai.2022.100075 DOI: https://doi.org/10.1016/j.caeai.2022.100075
Tominc, P., Oreški, D., & Rožman, M. (2023). Artificial Intelligence and Agility-Based Model for Successful Project Implementation and Company Competitiveness. Information (Switzerland), 14(6). https://doi.org/10.3390/info14060337 DOI: https://doi.org/10.3390/info14060337
Tusquellas, N., Palau, R., & Santiago, R. (2024). Analysis of the potential of artificial intelligence for professional development and talent management: A systematic literature review. International Journal of Information Management Data Insights, 4(2), 100288. https://doi.org/10.1016/j.jjimei.2024.100288 DOI: https://doi.org/10.1016/j.jjimei.2024.100288
Vrontis, D., Chaudhuri, R., & Chatterjee, S. (2023). Role of ChatGPT and Skilled Workers for Business Sustainability: Leadership Motivation as the Moderator. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612196 DOI: https://doi.org/10.3390/su151612196
Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411 DOI: https://doi.org/10.1108/BPMJ-10-2019-0411
Wu, Y., Wang, Z., & Wang, S. (2021). Human Resource Allocation Based on Fuzzy Data Mining Algorithm. Complexity, 2021. https://doi.org/10.1155/2021/9489114 DOI: https://doi.org/10.1155/2021/9489114
Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971 DOI: https://doi.org/10.1177/0739456X17723971
Xu, K. (2023). Research on Strategic Decision Model of Human Resource Management based on Biological Neural Network. International Journal of Advanced Computer Science and Applications, 14(8), 719–729. https://doi.org/10.14569/IJACSA.2023.0140880 DOI: https://doi.org/10.14569/IJACSA.2023.0140880
Yang, Y. (2022). Artificial intelligence-based organizational human resource management and operation system. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.962291 DOI: https://doi.org/10.3389/fpsyg.2022.962291
Zamani, S. Z. (2022). Small and Medium Enterprises (SMEs) facing an evolving technological era: a systematic literature review on the adoption of technologies in SMEs. European Journal of Innovation Management, 25(6), 735–757. https://doi.org/10.1108/EJIM-07-2021-0360 DOI: https://doi.org/10.1108/EJIM-07-2021-0360
Zirar, A., Ali, S. I., & Islam, N. (2023). Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124. https://doi.org/10.1016/j.technovation.2023.102747 DOI: https://doi.org/10.1016/j.technovation.2023.102747

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José del Carmen López Urbina

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Científica de Sistemas e Informática (RCSI) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the RCSI.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).