Sentiment analysis in social network X for the evaluation of the positioning of candidates in political elections

Authors

DOI:

https://doi.org/10.51252/rcsi.v5i1.763

Keywords:

KDD Methodology, Data Mining, NLP, Sentiment Polarity

Abstract

Social networks are among the most important means of political communication, through which opinions are published and generated on various topics; for this reason, they are an excellent means to analyze and understand events. In this work, sentiment analysis of X/Twitter posts about the elections of presidential candidates in Mexico in 2024 was carried out via the classification of sentiment polarity to measure the positioning of the participants. A methodology based on KDD was used in this research, and 151,821 posts were analyzed about four aspiring candidates for the presidency of Mexico from the MORENA party. The results showed that the candidates best positioned in the election obtained the highest number of posts with positive polarity, although the winning candidate did not coincide with the highest percentage of positive polarities. This result indicates that it is necessary to include other variables in addition to polarity to more accurately predict the winners of political contests.

References

Aljabri, M., Zagrouba, R., Shaahid, A., Alnasser, F., Saleh, A., & Alomari, D. M. (2023). Machine learning-based social media bot detection: a comprehensive literature review. Social Network Analysis and Mining, 13(1), 20. https://doi.org/10.1007/s13278-022-01020-5 DOI: https://doi.org/10.1007/s13278-022-01020-5

Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., & Singh, K. P. (2020). Analysis of Political Sentiment Orientations on Twitter. Procedia Computer Science, 167, 1821-1828. https://doi.org/10.1016/j.procs.2020.03.201 DOI: https://doi.org/10.1016/j.procs.2020.03.201

Antonakaki, D., Fragopoulou, P., & Ioannidis, S. (2021). A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks. Expert Systems with Applications, 164, 114006. https://doi.org/10.1016/j.eswa.2020.114006 DOI: https://doi.org/10.1016/j.eswa.2020.114006

Bharany, S., Alam, S., Shuaib, M., & Talwar, B. (2023). Sentiment Analysis of Twitter Data for COVID-19 Posts (pp. 457-466). https://doi.org/10.1007/978-981-19-6004-8_37 DOI: https://doi.org/10.1007/978-981-19-6004-8_37

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134 DOI: https://doi.org/10.1016/j.knosys.2021.107134

Caetano, J. A., Lima, H. S., Santos, M. F., & Marques-Neto, H. T. (2018). Using sentiment analysis to define twitter political users’ classes and their homophily during the 2016 American presidential election. Journal of Internet Services and Applications, 9(1), 18. https://doi.org/10.1186/s13174-018-0089-0 DOI: https://doi.org/10.1186/s13174-018-0089-0

Cantini, R., Marozzo, F., Talia, D., & Trunfio, P. (2022). Analyzing Political Polarization on Social Media by Deleting Bot Spamming. Big Data and Cognitive Computing, 6(1), 3. https://doi.org/10.3390/bdcc6010003 DOI: https://doi.org/10.3390/bdcc6010003

Chaudhry, H. N., Javed, Y., Kulsoom, F., Mehmood, Z., Khan, Z. I., Shoaib, U., & Janjua, S. H. (2021). Sentiment Analysis of before and after Elections: Twitter Data of U.S. Election 2020. Electronics, 10(17), 2082. https://doi.org/10.3390/electronics10172082 DOI: https://doi.org/10.3390/electronics10172082

Cheng, C., Luo, Y., & Yu, C. (2020). Dynamic mechanism of social bots interfering with public opinion in network. Physica A: Statistical Mechanics and its Applications, 551, 124163. https://doi.org/10.1016/j.physa.2020.124163 DOI: https://doi.org/10.1016/j.physa.2020.124163

Debuse, J. C. W., de la Iglesia, B., Howard, C. M., & Rayward-Smith, V. J. (2001). Building the KDD Roadmap. En Industrial Knowledge Management (pp. 179-196). Springer London. https://doi.org/10.1007/978-1-4471-0351-6_12 DOI: https://doi.org/10.1007/978-1-4471-0351-6_12

Espejel Espinoza, A., & Díaz Sandoval, M. (2022). Tendencias organizacionales y democracia interna en los partidos políticos en México. Los casos del PAN, PRI, PRD, PT, PVEM, MC y MORENA (1.a ed.). Facultad de Estudios Superiores Acatlán, UNAM.

Flamino, J., Galeazzi, A., Feldman, S., Macy, M. W., Cross, B., Zhou, Z., Serafino, M., Bovet, A., Makse, H. A., & Szymanski, B. K. (2023). Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections. Nature Human Behaviour. https://doi.org/10.1038/s41562-023-01550-8 DOI: https://doi.org/10.1038/s41562-023-01550-8

Garg, P. K., Pandey, M., & Arora, M. (2020). Sentiment Analysis for Predicting the Popularity of Web Series. En Communications in Computer and Information Science (1.a ed., pp. 133-140). Springer Nature. https://doi.org/10.1007/978-981-15-5830-6_12 DOI: https://doi.org/10.1007/978-981-15-5830-6_12

Gilardi, F., Gessler, T., Kubli, M., & Müller, S. (2022). Social Media and Political Agenda Setting. Political Communication, 39(1), 39-60. https://doi.org/10.1080/10584609.2021.1910390 DOI: https://doi.org/10.1080/10584609.2021.1910390

Lucca, J. B. (2019). Teoría y política en la génesis de MORENA como nuevo partido. Estudios Políticos, 49. https://doi.org/10.22201/fcpys.24484903e.2020.49.72396 DOI: https://doi.org/10.22201/fcpys.24484903e.2020.49.72396

Marín Dueñas, P. P., Simancas González, E., & Berzosa Moreno, A. (2019). Uso e influencia de Twitter en la comunicación política: el caso del Partido Popular y Podemos en las elecciones generales de 2016. Cuadernos.info, 45, 129-144. https://doi.org/10.7764/cdi.45.1595 DOI: https://doi.org/10.7764/cdi.45.1595

Noor, H. M., Turetken, O., & Akgul, M. (2024). Social Media, Sentiments and Political Discourse – An Exploratory Study of the 2021 Canadian Federal Election. ACM Transactions on Social Computing, 7(1-4), 1-23. https://doi.org/10.1145/3665450 DOI: https://doi.org/10.1145/3665450

Oliveira, D. J. S., Bermejo, P. H. de S., Pereira, J. R., & Barbosa, D. A. (2019). The application of the sentiment analysis technique in social media as a tool for social management practices at the governmental level. Revista de Administração Pública, 53(1), 235-251. https://doi.org/10.1590/0034-7612174204 DOI: https://doi.org/10.1590/0034-7612174204

Ongo Nkoa, B. E., Ondoua Beyene, B., Ngo Nsoa Simb, J. F., & Ngnouwal Eloundou, G. (2023). Does social media improve women’s political empowerment in Africa? Telecommunications Policy, 47(9), 102624. https://doi.org/10.1016/j.telpol.2023.102624 DOI: https://doi.org/10.1016/j.telpol.2023.102624

Oueslati, O., Hajhmida, M. Ben, Ounelli, H., & Cambria, E. (2023). Sentiment Analysis of Influential Messages for Political Election Forecasting. En International Conference on Computational Linguistics and Intelligent Text Processing (1.a ed., pp. 280-292). La Rochelle. https://doi.org/10.1007/978-3-031-24340-0_21 DOI: https://doi.org/10.1007/978-3-031-24340-0_21

Russo, R., Blikstein, P., & Literat, I. (2024). Twisted knowledge construction on X/Twitter: an analysis of constructivist sensemaking on social media leading to political radicalization. Information and Learning Sciences, 125(9), 693-719. https://doi.org/10.1108/ILS-12-2023-0210 DOI: https://doi.org/10.1108/ILS-12-2023-0210

Sarapugdi, W., & Namkhun, S. (2023). A Social Analysis of Thailand’s 2023 Election Through Twitter Feeds. 2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE), 208-212. https://doi.org/10.1109/ICITEE59582.2023.10317682 DOI: https://doi.org/10.1109/ICITEE59582.2023.10317682

Sobkowicz, A., & Kozłowski, M. (2018). Sentiment Analysis in Polish Web-Political Discussions. En Human Language Technology. Challenges for Computer Science and Linguistics (pp. 363-377). Springer Nature. https://doi.org/10.1007/978-3-319-93782-3_26 DOI: https://doi.org/10.1007/978-3-319-93782-3_26

Turón, A., Altuzarra, A., Moreno-Jiménez, J. M., & Navarro, J. (2023). Evolution of social mood in Spain throughout the COVID-19 vaccination process: a machine learning approach to tweets analysis. Public Health, 215, 83-90. https://doi.org/10.1016/j.puhe.2022.12.003 DOI: https://doi.org/10.1016/j.puhe.2022.12.003

Vyas, V., & Uma, V. (2018). An Extensive study of Sentiment Analysis tools and Binary Classification of tweets using Rapid Miner. Procedia Computer Science, 125, 329-335. https://doi.org/10.1016/j.procs.2017.12.044 DOI: https://doi.org/10.1016/j.procs.2017.12.044

Published

2025-01-20

How to Cite

Denicia-Carral, M. C., Ballinas-Hernández, A. L., Minquiz-Xolo, G. M., & Medina-Cruz, H. (2025). Sentiment analysis in social network X for the evaluation of the positioning of candidates in political elections. Revista Científica De Sistemas E Informática, 5(1), e763. https://doi.org/10.51252/rcsi.v5i1.763