Application of the convolutional network Mask R-CNN for the estimation of the body weight of the guinea pig




mobile application, image dataset, artificial intelligence, convolutional networks


Artificial intelligence can contribute in tracking the productive cycle of the cuy through the application of convolutional networks, being a necessity the estimation of its weight. This study focused on the application of the Mask R-CNN convolutional network, using a mobile application as a tool for image capture. The methodology covered the following stages: i) bibliographic review, ii) data collection (images and pig weights), iii) image processing through data augmentation, iv) construction of a dataset (image selection and data transformation); , v) adaptation and training of the convolutional network, vi) analysis of the results to validate its performance, and finally, vii) implementation of a mobile application as a weight estimation tool. A set of 6244 pig images with their respective weights and masks was managed to be collected, together with the Mask R-CNN network adaptation. These tasks led to a correlation of R2 = 80.2% with the validation set, as well as to the development of a functional prototype capable of estimating the weight of pigs using the camera of a cell phone.


Download data is not yet available.


Abdulla, W. (2017). Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub.

Buayai, P., Piewthongngam, K., Leung, C. K., & Saikaew, K. R. (2019). Semi-Automatic Pig Weight Estimation Using Digital Image Analysis. Applied Engineering in Agriculture, 35(4), 521–534. DOI:

Cang, Y., He, H., & Qiao, Y. (2019). An Intelligent Pig Weights Estimate Method Based on Deep Learning in Sow Stall Environments. IEEE Access, 7, 164867–164875. DOI:

Cominotte, A., Fernandes, A. F. A., Dorea, J. R. R., Rosa, G. J. M., Ladeira, M. M., van Cleef, E. H. C. B., Pereira, G. L., Baldassini, W. A., & Machado Neto, O. R. (2020). Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases. Livestock Science, 232, 103904. DOI:

Dohmen, R., Catal, C., & Liu, Q. (2022). Computer vision-based weight estimation of livestock: a systematic literature review. New Zealand Journal of Agricultural Research, 65(2–3), 227–247. DOI:

Fernandes, A. F. A., Dórea, J. R. R., Fitzgerald, R., Herring, W., & Rosa, G. J. M. (2019). A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision1. Journal of Animal Science, 97(1), 496–508. DOI:

Gil Santos, V. (2007). Importancia del Cuy y su Competitividad en el Mercado. Archivos Latinoamericanos De Producción Animal, 15(5).

González Marcos, A., Martínez de Pisón Ascacíbar, F., Pernía Espinoza, A., Alba Elías, F., Castejón Limas, M., Ordieres Meré, J., & Vergara González, E. (2006). Técnicas y Algoritmos Básicos de Visión Artificial (1st ed.). Universidad de La Rioja.

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), 2980–2988. DOI:

Jensen, D., & Dominiak, K. (2018). Automatic estimation of slaughter pig live weight using convolutional neural networks. II International Conference on Agro BigData and Decision Support Systems in Agriculture.

Jun, K., Kim, S. J., & Ji, H. W. (2018). Estimating pig weights from images without constraint on posture and illumination. Computers and Electronics in Agriculture, 153, 169–176. DOI:

Kashiha, M., Bahr, C., Ott, S., Moons, C. P. H., Niewold, T. A., Ödberg, F. O., & Berckmans, D. (2014). Automatic weight estimation of individual pigs using image analysis. Computers and Electronics in Agriculture, 107, 38–44. DOI:

Konovalov, D. A., Saleh, A., Efremova, D. B., Domingos, J. A., & Jerry, D. R. (2019). Automatic Weight Estimation of Harvested Fish from Images. 2019 Digital Image Computing: Techniques and Applications (DICTA), 1–7. DOI:

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context (pp. 740–755). DOI:

Ma, W., Li, Q., Li, J., Ding, L., & Yu, Q. (2021). A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks. Information Processing in Agriculture, 8(2), 299–309. DOI:

Miller, G. A., Hyslop, J. J., Barclay, D., Edwards, A., Thomson, W., & Duthie, C.-A. (2019). Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Frontiers in Sustainable Food Systems, 3. DOI:

Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. DOI:

Pezzuolo, A., Guarino, M., Sartori, L., González, L. A., & Marinello, F. (2018). On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Computers and Electronics in Agriculture, 148, 29–36. DOI:

Qiao, Y., Truman, M., & Sukkarieh, S. (2019). Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Computers and Electronics in Agriculture, 165, 104958. DOI:

Wang, Y., Yang, W., Winter, P., & Walker, L. (2008). Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100(1), 117–125. DOI:

Wilding-McBride, D., & Pun, D. (2018). Mask R-CNN utils. GitHub.

Wongsriworaphon, A., Arnonkijpanich, B., & Pathumnakul, S. (2015). An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Computers and Electronics in Agriculture, 115, 26–33. DOI:




How to Cite

Ormeño-Ayala, Y. I., & Zapata-Ttito, A. G. (2024). Application of the convolutional network Mask R-CNN for the estimation of the body weight of the guinea pig. Revista Científica De Sistemas E Informática, 4(1), e614.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.