Computer libraries used in analysis of dermatological images with computational vision: a literature review




dermatological classification, clinical diagnosis, artificial intelligence, skin lesions, image processing, skin segmentation


Skin image analysis plays a fundamental role in the field of dermatology, as it enables early and accurate detection of various skin conditions. However, this process faces significant challenges due to the variability of characteristics present in skin lesions, such as textures, tones, and the existence of villi on the contour. In this article, a systematic review of literature on computer libraries used in the analysis of dermatological images with computer vision is presented. This research is based on the PRISMA statement and scientific databases: SCOPUS and IEEE Xplore for searching and aims to identify a wide variety of computer libraries and skin lesions. The results showed 7 libraries and 21 dermatological lesions, which contribute to a more precise analysis and a more reliable clinical diagnosis for the timely detection of skin disorders. In conclusion, this research highlights computer libraries that have a significant impact on improving clinical diagnosis, which is key to the development of effective solutions for people's health.


Download data is not yet available.


Abbas, Q., Ramzan, F., & Ghani, M. U. (2021). Acral melanoma detection using dermoscopic images and convolutional neural networks. Visual Computing for Industry, Biomedicine, and Art, 4(1). DOI:

Abdar, M., Samami, M., Dehghani Mahmoodabad, S., Doan, T., Mazoure, B., Hashemifesharaki, R., Liu, L., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning. Computers in Biology and Medicine, 135(April), 104418. DOI:

Aladhadh, S., Alsanea, M., Aloraini, M., Khan, T., Habib, S., & Islam, M. (2022). An Effective Skin Cancer Classification Mechanism via Medical Vision Transformer. Sensors, 22(11). DOI:

Albraikan, A. A., Nemri, N., Alkhonaini, M. A., Hilal, A. M., Yaseen, I., & Motwakel, A. (2023). Automated Deep Learning Based Melanoma Detection and Classification Using Biomedical Dermoscopic Images. Computers, Materials and Continua, 74(2), 2443–2459. DOI:

Alcantud Marín, F., Alonso Esteban, Y., & Rico Bañón, D. (2015). Herramientas de cribado para la detección de retrasos o trastornos en el desarrollo: Una revisión sistemática de la literatura. Revista Española De Discapacidad, 3(2), 7–26. DOI:

Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., Zhang, J., Santamaría, J., & Duan, Y. (2022). Robust application of new deep learning tools: an experimental study in medical imaging. Multimedia Tools and Applications, 81(10), 13289–13317. DOI:

Ashtari, P., Sima, D. M., De Lathauwer, L., Sappey-Marinier, D., Maes, F., & Van Huffel, S. (2023). Factorizer: A scalable interpretable approach to context modeling for medical image segmentation. Medical Image Analysis, 84(February 2022), 102706. DOI:

Back, S., Lee, S., Shin, S., Yu, Y., Yuk, T., Jong, S., Ryu, S., & Lee, K. (2021). Robust Skin Disease Classification by Distilling Deep Neural Network Ensemble for the Mobile Diagnosis of Herpes Zoster. IEEE Access, 9, 20156–20169. DOI:

Bala, D., Hossain, M. S., Hossain, M. A., Abdullah, M. I., Rahman, M. M., Manavalan, B., Gu, N., Islam, M. S., & Huang, Z. (2023). MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification. Neural Networks, 161, 757–775. DOI:

Bibi, A., Khan, M. A., Javed, M. Y., Tariq, U., Kang, B. G., Nam, Y., Mostafa, R. R., & Sakr, R. H. (2022). Skin lesion segmentation and classification using conventional and deep learning based framework. Computers, Materials and Continua, 71(2), 2477–2495. DOI:

Bing, S., Chawang, K., & Chiao, J.-C. (2023). A Tuned Microwave Resonant System for Subcutaneous Imaging. Sensors, 23(6), 3090. DOI:

Caballé, N., Castillo, J. L., Gómez, J. A., Gómez, J. M., & Polo, M. (2020). Machine Learning Applied to Diagnosis of Human Diseases : A Systematic Review. Applied Sciences, 1–27. DOI:

Cai, Y., Chen, H., Yang, X., Zhou, Y., & Cheng, K.-T. (2023). Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images. Medical Image Analysis, 86, 102794. DOI:

Cañedo, R., Rodriguez, R., & Marilis, M. (2010). Scopus : The largest database of peer-reviewed scientific literature available to underdeveloped countries Scopus : la mayor base de datos de literatura científica arbitrada al alcance de los países subdesarrollados Scopus : The largest database of peer-r. ACIMED, February 2016.

Cano, E., Mendoza-Avilés, J., Areiza, M., Guerra, N., Mendoza-Valdés, J. L., & Rovetto, C. A. (2021). Multi Skin Lesions Classification using Fine-tuning and Data-augmentation Applying Nasnet. PeerJ Computer Science, 7(Mcc), 1–20. DOI:

Choudhary, P., Singhai, J., & Yadav, J. S. (2021). Curvelet and fast marching method-based technique for efficient artifact detection and removal in dermoscopic images. International Journal of Imaging Systems and Technology, 31(4), 2334–2345. DOI:

Cui, R., Yang, R., Liu, F., & Geng, H. (2023). HD2A-Net: A novel dual gated attention network using comprehensive hybrid dilated convolutions for medical image segmentation. Computers in Biology and Medicine, 152(November 2022), 106384. DOI:

Decharatanachart, P., Chaiteerakij, R., Tiyarattanachai, T., & Treeprasertsuk, S. (2021). Application of artificial intelligence in chronic liver diseases : a systematic review and meta ‑ analysis. BMC Gastroenterology, 1–16. DOI:

Deng, Q., Beltran, J. C. C., & Lee, D. H. (2021). Assessment of Segmentation Impact on Melanoma Classification Using Convolutional Neural Networks. Journal of Computing Science and Engineering, 15(3), 115–124. DOI:

Gálvez, A., Iglesias, A., Fister, I., Otero, C., & Díaz, J. A. (2021). NURBS functional network approach for automatic image segmentation of macroscopic medical images in melanoma detection. Journal of Computational Science, 56(April). DOI:

Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., & Zhang, S. (2021). CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation. IEEE Transactions on Medical Imaging, 40(2), 699–711. DOI:

Han, Z., Huang, H., Lu, D., Fan, Q., Ma, C., Chen, X., Gu, Q., & Chen, Q. (2023). One-stage and lightweight CNN detection approach with attention: Application to WBC detection of microscopic images. Computers in Biology and Medicine, 154(October 2022), 106606. DOI:

He, S., Feng, Y., Grant, P. E., & Ou, Y. (2023). Segmentation ability map: Interpret deep features for medical image segmentation. Medical Image Analysis, 84(December 2022), 102726. DOI:

Islam, M. M., Yang, H. C., Poly, T. N., Jian, W. S., & (Jack) Li, Y. C. (2020). Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Computer Methods and Programs in Biomedicine, 191, 1–16. DOI:

Jaisakthi, S. M., Mirunalini, P., Aravindan, C., & Appavu, R. (2022). Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools and Applications, 15763–15778. DOI:

Jiji, G. W., Rajesh, A., & Raj, P. J. D. (2021). CBI + R: A Fusion Approach to Assist Dermatological Diagnoses. International Journal of Image and Graphics, 21(1). DOI:

Karri, M., Annavarapu, C. S. R., & Acharya, U. R. (2023). Skin lesion segmentation using two-phase cross-domain transfer learning framework. Computer Methods and Programs in Biomedicine, 231. DOI:

Kosgiker, G. M., Deshpande, A., & Kauser, A. (2021). SegCaps: An efficient SegCaps network-based skin lesion segmentation in dermoscopic images. International Journal of Imaging Systems and Technology, 31(2), 874–894. DOI:

Kumar, K. S., Suganthi, N., Muppidi, S., & Kumar, B. S. (2022). FSPBO-DQN: SeGAN based segmentation and Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in IoT applications. Artificial Intelligence in Medicine, 129(October 2021), 102299. DOI:

La Salvia, M., Torti, E., Leon, R., Fabelo, H., Ortega, S., Martinez-Vega, B., Callico, G. M., & Leporati, F. (2022). Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application. Sensors, 22(16). DOI:

Lai, H., Fu, S., Zhang, J., Cao, J., Feng, Q., Lu, L., & Huang, M. (2022). Prior Knowledge-Aware Fusion Network for Prediction of Macrovascular Invasion in Hepatocellular Carcinoma. IEEE Transactions on Medical Imaging, 41(10), 2644–2657. DOI:

Lan, Z., Cai, S., He, X., & Wen, X. (2022). FixCaps: An Improved Capsules Network for Diagnosis of Skin Cancer. IEEE Access, 10(May), 76261–76267. DOI:

Lei, J., Yang, G., Wang, S., Feng, Z., & Liang, R. (2023). Category-aware feature attribution for Self-Optimizing medical image classification. Displays, 77(February), 102397. DOI:

Li, S., Xie, Y., Wang, G., Zhang, L., & Zhou, W. (2022). Attention guided discriminative feature learning and adaptive fusion for grading hepatocellular carcinoma with Contrast-enhanced MR. Computerized Medical Imaging and Graphics, 97(February), 102050. DOI:

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. In Journal of clinical epidemiology (Vol. 62, Issue 10). DOI:

Liu, Z., Xiong, R., & Jiang, T. (2023). CI-Net: Clinical-Inspired Network for Automated Skin Lesion Recognition. IEEE Transactions on Medical Imaging, 42(3), 619–632. DOI:

Lou, A., Guan, S., & Loew, M. (2023). CFPNet-M: A light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation. Computers in Biology and Medicine, 154(December 2022), 106579. DOI:

Mansour, R. F., Althubiti, S. A., & Alenezi, F. (2022). Computer Vision with Machine Learning Enabled Skin Lesion Classification Model. Computers, Materials and Continua, 73(1), 849–864. DOI:

Maqsood, S., & Damaševičius, R. (2023). Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Networks, 160, 238–258. DOI:

Morgado, A. C., Andrade, C., Teixeira, L. F., & Vasconcelos, M. J. M. (2021). Incremental learning for dermatological imaging modality classification. Journal of Imaging, 7(9). DOI:

Nawaz, M., Masood, M., Javed, A., Iqbal, J., Nazir, T., Mehmood, A., & Ashraf, R. (2021). Melanoma localization and classification through faster region-based convolutional neural network and SVM. Multimedia Tools and Applications, 80(19), 28953–28974. DOI:

Nguyen, D. M. H., Nguyen, T. T., Vu, H., Pham, Q., Nguyen, M. D., Nguyen, B. T., & Sonntag, D. (2022). TATL: Task agnostic transfer learning for skin attributes detection. Medical Image Analysis, 78, 102359. DOI:

Palacios, D., & Díaz, A. (2017). Dermatoscopia para principiantes ( i ): características generales. Medicina de Familia SEMERGEN, 43(3), 216–221. DOI:

Pereira, P. M. M., Thomaz, L. A., Tavora, L. M. N., Assuncao, P. A. A., Fonseca-Pinto, R. M., Paiva, R. P., & Faria, S. M. M. d. (2022). Melanoma classification using light-Fields with morlet scattering transform and CNN: Surface depth as a valuable tool to increase detection rate. Medical Image Analysis, 75, 102254. DOI:

Phan, D. T., Ta, Q. B., Ly, C. D., Nguyen, C. H., Park, S., Choi, J., Se, H. O., & Oh, J. (2023). Smart Low Level Laser Therapy System for Automatic Facial Dermatological Disorder Diagnosis. IEEE Journal of Biomedical and Health Informatics, 27(3), 1546–1557. DOI:

Qiu, S., Li, C., Feng, Y., Zuo, S., Liang, H., & Xu, A. (2023). GFANet: Gated Fusion Attention Network for skin lesion segmentation. Computers in Biology and Medicine, 155(December 2022). DOI:

Quero-Caiza, W., & Altuve, M. (2021). Recognition of Skin Lesions in Dermoscopic Images using Local Binary Patterns and Multinomial Logistic Regression. IEEE Latin America Transactions, 20(7), 2020–2028. DOI:

Szolga, L., Bozga, D., & Florea, C. (2001). End-User Skin Analysis (Moles) through Image Acquisition and Processing System. Sensors, 20, 9–11.

Thurnhofer-Hemsi, K., Lopez-Rubio, E., Dominguez, E., & Elizondo, D. A. (2021). Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting. IEEE Access, 9, 112193–112205. DOI:

Wang, K., Zhang, X., Lu, Y., Zhang, W., Huang, S., & Yang, D. (2023). GSAL: Geometric structure adversarial learning for robust medical image segmentation. Pattern Recognition, 140, 109596. DOI:

Wei zhu, Liu, L., Kuang, F., Li, L., Xu, S., & Liang, Y. (2022). An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer. Computers in Biology and Medicine, 151(PA), 106227. DOI:

Wu, H., Pan, J., Li, Z., Wen, Z., & Qin, J. (2021). Automated Skin Lesion Segmentation Via an Adaptive Dual Attention Module. IEEE Transactions on Medical Imaging, 40(1), 357–370. DOI:

Wu, Yang, H., Peng, L., Lian, Z., Li, M., Qu, G., Jiang, S., & Han, Y. (2022). AGNet: Automatic generation network for skin imaging reports. Computers in Biology and Medicine, 141(June 2021), 105037. DOI:

Yang, C., & Lu, G. M. (2022). Skin Lesion Segmentation with Codec Structure Based Upper and Lower Layer Feature Fusion Mechanism. KSII Transactions on Internet and Information Systems, 16(1), 60–79. DOI:

Yao, P., Shen, S., Xu, M., Liu, P., Zhang, F., Xing, J., Shao, P., Kaffenberger, B., & Xu, R. X. (2022). Single Model Deep Learning on Imbalanced Small Datasets for Skin Lesion Classification. IEEE Transactions on Medical Imaging, 41(5), 1242–1254. DOI:

Yilmaz, E., & Trocan, M. (2021). A modified version of GoogLeNet for melanoma diagnosis. Journal of Information and Telecommunication, 5(3), 395–405. DOI:

Zaid, M., Ali, S., Ali, M., Hussein, S., Saadia, A., & Sultani, W. (2022). Identifying out of distribution samples for skin cancer and malaria images. Biomedical Signal Processing and Control, 78(May), 103882. DOI:

Zhang, J., Liu, Y., Wu, Q., Wang, Y., Liu, Y., Xu, X., & Song, B. (2022). SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation. Computers in Biology and Medicine, 150(August), 105954. DOI:

Zhao, D., Qi, A., Yu, F., Heidari, A. A., Chen, H., & Li, Y. (2023). Multi-strategy ant colony optimization for multi-level image segmentation: Case study of melanoma. Biomedical Signal Processing and Control, 83(February), 104647. DOI:

Zhao, H., Wang, A., & Zhang, C. (2022). Research on melanoma image segmentation by incorporating medical prior knowledge. PeerJ Computer Science, 8. DOI:




How to Cite

Huanatico-Lipa, J. C., & Coral-Ygnacio, M. A. (2024). Computer libraries used in analysis of dermatological images with computational vision: a literature review. Revista Científica De Sistemas E Informática, 4(1), e590.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.