Wastewater treatment by electrocoagulation: bibliometric analysis of scientific publications and review of results
DOI:
https://doi.org/10.51252/reacae.v4i1.802Keywords:
contaminants, efficiency, electrodes, electrochemistry, removalAbstract
This review article presents a bibliometric analysis of 3146 scientific articles extracted from the Scopus database, using the keywords “Wastewater Electrocoagulation”. The selection covered publications from 1975 to 2024, distributed in 715 sources and with the collaboration of 7876 authors. The VosViewer and Bibliometrics programs were used to carry out the analysis. In VosViewer, a minimum threshold of 12 occurrences per keyword was used, selecting 133 of the 4994 keywords registered using the normalized association method. These 133 terms were organized into 8 clusters, each analyzed according to recent advances in electrocoagulation reactor configurations, types of electrode materials, and pollutant removal efficiency in both domestic and industrial wastewater. The study focused on analyzing the evolution of publications on electrocoagulation and highlighting recent advances in pollutant removal using this technology. Through cluster analysis, a comprehensive view of current research was obtained, which allowed the identification of the most innovative and emerging areas of this technology. In addition, different methods and materials were evaluated to improve the efficiency of the process.
Downloads
References
Aguilar-Ascon, E., Marrufo-Saldana, L., & Neyra-Ascon, W. (2020). Efficiency of Electrocoagulation Method to Reduce COD, BOD and TSS in Tannery Industry Wastewater: Application of the Box-Behnken Design. Leather and Footwear Journal, 20(3), 217-228. https://doi.org/10.24264/lfj.20.3.1
Ahangarnokolaei, M. A., Attarian, P., Ayati, B., Ganjidoust, H., & Rizzo, L. (2021). Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 9(5), 106251. https://doi.org/10.1016/j.jece.2021.106251
Ahmed, T., Khan, M. H. R. B., Ahsan, A., Islam, N., El-Sergany, M., Shafiquzzaman, M., Imteaz, M., & Al-Ansari, N. (2024). Evaluation of the impacts of seawater integration to electrocoagulation for the removal of pollutants from textile wastewater. Environmental Sciences Europe, 36(1), 77. https://doi.org/10.1186/s12302-024-00896-8
Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7), 1648-1662. https://doi.org/10.2166/wst.2021.356
AlJaberi, F. Y., & Hawaas, Z. A. (2023). Electrocoagulation removal of Pb, Cd, and Cu ions from wastewater using a new configuration of electrodes. MethodsX, 10, 101951. https://doi.org/10.1016/j.mex.2022.101951
Almukdad, A., Hawari, A. H., & Hafiz, M. (2021). An Enhanced Electrocoagulation Process for the Removal of Fe and Mn from Municipal Wastewater Using Dielectrophoresis (DEP). Water, 13(4), 485. https://doi.org/10.3390/w13040485
Aoudjehane, M., & Benatallah, M. E. (2015). Treatment of dairy wastewaters by electrocoagulation using iron electrodesTraitement des eaux résiduaires d’une laiterie par électrocoagulation avec des électrodes de fer. Water Quality Research Journal, 50(2), 198-209. https://doi.org/10.2166/wqrjc.2014.053
Ardhianto, R., & Bagastyo, A. Y. (2019). Personal Care Wastewater Treatment With Electro-coagulation and Electro-oxidation. E3S Web of Conferences, 125, 03008. https://doi.org/10.1051/e3sconf/201912503008
Asaithambi, P., Busier Yesuf, M., Milargh Dagmiaw, S., Mekonin Desta, W., Hussen, M., Beyene, D., Sampath, S., Ahmed, M. Z., Sakthivel, P., Thirumurugan, A., Kumar Prajapati, A., & Hariharan, N. M. (2024). Ozone assisted alternating current-electrocoagulation technique for color and COD removal with determination of electrical energy from industrial wastewater. Separation and Purification Technology, 350, 127958. https://doi.org/10.1016/j.seppur.2024.127958
Asfaha, Y. G., Zewge, F., Yohannes, T., & Kebede, S. (2022a). Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Chemosphere, 302, 134706. https://doi.org/10.1016/j.chemosphere.2022.134706
Asfaha, Y. G., Zewge, F., Yohannes, T., & Kebede, S. (2022b). Investigation of cotton textile industry wastewater treatment with electrocoagulation process: performance, mineralization, and kinetic study. Water Science and Technology, 85(5), 1549-1567. https://doi.org/10.2166/wst.2022.061
Benhadji, A., & Ahmed, M. T. (2020). Yellow 2G dye degradation by electro-Fenton process using steel electrode as catalysis and its phytotoxicity effect. Water Science and Technology. https://doi.org/10.2166/wst.2020.361
Biao, W., Hashim, N. A., Rabuni, M. F. Bin, Lide, O., & Ullah, A. (2024). Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. Chemosphere, 361, 142546. https://doi.org/10.1016/j.chemosphere.2024.142546
Castillo-Suárez, L. A., Linares-Hernández, I., Martínez-Miranda, V., Garduño-Pineda, L., Castañeda-Juárez, M., & Teutli-Sequeira, E. A. (2024). Denim industry wastewater treatment by a heterogeneous solar-Fenton process catalyzed by Fe supported on recycled polyethylene terephthalate (PET) by ultrasonic modification. Journal of Environmental Management, 351, 119929. https://doi.org/10.1016/j.jenvman.2023.119929
Chen, P., Li, J., & Xie, N. (2023). Study on Influencing Parameters of Total Phosphorus Degradation in Cattle Farm Wastewater by Electrocoagulation Using Magnesium, Aluminum, and Iron Electrodes. Water, 15(23), 4134. https://doi.org/10.3390/w15234134
Cruz, K. D., Villanueva, B. H. A., Martos, M. K. D., Asuncion, A. G., & Esguerra, M. J. S. (2020). Ammonia, oil and grease, and COD reduction of septage wastewater via electrocoagulation using black iron electrodes. IOP Conference Series: Earth and Environmental Science, 612(1), 012035. https://doi.org/10.1088/1755-1315/612/1/012035
Da Silva, L. T. V., de Oliveira, A. G., Ribeiro, J. P., Lopes, A. F., da Silva Costa, R., Neto, E. F. A., Carvalhod, T. V., Romero, F. B., Santos Sales, J. V., de Souza, F. T. C., & Nascimento, R. F. do. (2024). Electrocoagulation cell for the production of hydrogen without carbon emission and simultaneous treatment of textile wastewater. International Journal of Hydrogen Energy, 64, 906-913. https://doi.org/10.1016/j.ijhydene.2024.03.310
Dermentzis, K., Karakosta, K., Kosheleva, R., & Kokkinos, N. (2020). Electrochemical Remediation of Phthalocyanine Dye Wastewater and simultaneous Hydrogen Production. Journal of Engineering Science and Technology Review, 13(6), 22-25. https://doi.org/10.25103/jestr.136.04
Esfandyari, Y., Saeb, K., Tavana, A., Rahnavard, A., & Fahimi, F. G. (2019). Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Science and Technology, 80(12), 2422-2429. https://doi.org/10.2166/wst.2020.003
Galvão, N., de Souza, J. B., & Vidal, C. M. de S. (2020). Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. Journal of Environmental Chemical Engineering, 8(5), 104368. https://doi.org/10.1016/j.jece.2020.104368
Gao, L., Liu, W., Cui, M., Zhu, Y., Wang, L., Wang, A., & Huang, C. (2021). Enhanced methane production in an up-flow microbial electrolysis assisted reactors: Hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes. Water Research, 191, 116813. https://doi.org/10.1016/j.watres.2021.116813
Ghernaout, D., Elboughdiri, N., & Alghamdi, A. (2020). The role of electrocoagulation process in the removal of emerging pollutants. International Journal of Environmental Science and Technology, 17(6), 2801-2816.
Jiang, C., Liu, Y., Zhang, C., & Li, X. (2023). Study on influencing parameters and long-term operation of electrocoagulation phosphorus removal from small rural domestic sewage. Water Science & Technology, 87(8), 1866-1878. https://doi.org/10.2166/wst.2023.112
Koyuncu, S., & Arıman, S. (2020). Domestic wastewater treatment by real-scale electrocoagulation process. Water Science and Technology, 81(4), 656-667. https://doi.org/10.2166/wst.2020.128
Kumar, A., & Pal, P. (2019). Assessing the feasibility of industrial wastewater treatment using AOPs coupled with membrane technologies. Journal of Cleaner Production, 221, 693-706.
Lamhar, R., Kambuyi, T. N., Bejjany, B., Kherbeche, A., Digua, K., & Dani, A. (2024). Electrocoagulation for the decolorization of textile wastewater in single-channel reactor: Response surface methodology for optimization and a novel model exploitation. Journal of Cleaner Production, 450, 141900. https://doi.org/10.1016/j.jclepro.2024.141900
Li, Y., Zhao, X., & He, Z. (2021). Integrating membrane technology in sustainable wastewater treatment. Water Research, 190, 116682.
Liu, R., Wei, W., & Zhao, X. (2020). Sustainable approaches in advanced wastewater treatment: A review of current technologies. Environmental Science and Pollution Research, 27(25), 31022-31036.
Mao, Y., Zhao, Y., & Cotterill, S. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15(8), 1455. https://doi.org/10.3390/w15081455
Mehri, M., Fallah, N., & Nasernejad, B. (2021). Mechanisms of heavy metal and oil removal from synthetic saline oilfield produced water by electrocoagulation. npj Clean Water, 4(1), 45. https://doi.org/10.1038/s41545-021-00135-0
Mengistu, L. R., Samuel, Z. A., Kitila, C. D., & Bayu, A. B. (2022). Comparison Study on Sonodirect and Sonoalternate Current Electrocoagulation Process for Domestic Wastewater Treatment. International Journal of Analytical Chemistry, 2022, 1-13. https://doi.org/10.1155/2022/3477995
Mielcarek, A., Bryszewski, K. Ł., Rodziewicz, J., Kłobukowska, K., & Janczukowicz, W. (2024). Phosphorus Removal Rate and Efficiency in an Electrochemical Sequencing Reactor for the Treatment of Wastewater with Low Organic Carbon Content. Energies, 17(6), 1352. https://doi.org/10.3390/en17061352
Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of The Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971
Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5
Moradi, M., Vasseghian, Y., Arabzade, H., & Mousavi Khaneghah, A. (2021). Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook. Chemosphere, 263, 128314. https://doi.org/10.1016/j.chemosphere.2020.128314
Moreno-Cabrera, G. A., Alvarez-Arteaga, G., Orozco-Hernández, M. E., & Reyes-Zuazo, M. A. (2021). Tratamiento primario de aguas almacenadas en estanques rústicos mediante la aplicación de coagulantes químicos y biológicos. Ecosistemas y Recursos Agropecuarios, 8(2). https://doi.org/10.19136/era.a8n2.2734
Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032
Muniasamy, S. K., Gameda, T. T., Mallaian, L. S., Rengaraju, I., Segaran, J., Periyasamy, Y., Murugesan, P., & Subramanian, S. (2022). Investigation on Solar-Powered Electrocoagulation (SPEC) for the Treatment of Domestic Wastewater (DWW). Advances in Materials Science and Engineering, 2022, 1-6. https://doi.org/10.1155/2022/5389340
Nandi, B. K., & Patel, S. (2017). Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, S2961-S2968. https://doi.org/10.1016/j.arabjc.2013.11.032
Nidheesh, P. V., Murshid, A., & Chanikya, P. (2023). Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. Chemosphere, 338, 139449. https://doi.org/10.1016/j.chemosphere.2023.139449
Nnaji, P. C., Ume, C. S., Obasi, R. U., Anadebe, V. C., Ezemagu, I. G., Okeke, B. U., Ude, C. J., & Onukwuli, O. D. (2023). Machine learning-based performance evaluation and sludge characterization studies of oxidized starch-aluminum electrode assisted by direct current treatment of dye laden wastewater. Results in Engineering, 20, 101576. https://doi.org/10.1016/j.rineng.2023.101576
Obi, C. C., Nwabanne, J. T., Igwegbe, C. A., Abonyi, M. N., Umembamalu, C. J., & Kamuche, T. T. (2024). Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. Journal of Environmental Management, 353, 120161. https://doi.org/10.1016/j.jenvman.2024.120161
Oktiawan, W., Priyambada, I. B., Aji, S., & Budi, F. S. (2021). Effect of current strength on electrocoagulation using Al-Fe electrodes in COD and TSS removal of domestic wastewater. IOP Conference Series: Earth and Environmental Science, 623(1), 012080. https://doi.org/10.1088/1755-1315/623/1/012080
Omwene, P. I., & Kobya, M. (2018). Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study. Process Safety and Environmental Protection, 116, 34-51. https://doi.org/10.1016/j.psep.2018.01.005
Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65-73. https://doi.org/10.1016/j.ecoleng.2018.08.025
Öztel, M. D., Kuleyin, A., & Akbal, F. (2020). Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Science and Technology, 82(4), 663-672. https://doi.org/10.2166/wst.2020.357
Pani, N., T. S., A. S., Menon, P. M., Boruah, S., Patel, B., & Kaul, D. S. (2022). Electrocoagulation followed by sound agitation for removal of nitrogen and carbon-based pollutants from industrial wastewater. Water Science and Technology, 86(11), 2861-2877. https://doi.org/10.2166/wst.2022.364
Pasciucco, E., Pasciucco, F., Iannelli, R., & Pecorini, I. (2024). A Fenton-based approach at neutral and un-conditioned pH for recalcitrant COD removal in tannery wastewater: Experimental test and sludge characterization. Science of The Total Environment, 926, 172070. https://doi.org/10.1016/j.scitotenv.2024.172070
Pereira, A. S. A. de P., Silva, T. A., Magalhães, I. B., Ferreira, J., Braga, M. Q., Lorentz, J. F., Assemany, P. P., Couto, E. de A. do, & Calijuri, M. L. (2024). Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvestinga technologies. Science of The Total Environment, 920, 170918. https://doi.org/10.1016/j.scitotenv.2024.170918
Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1-12. https://doi.org/10.1016/j.wri.2013.09.005
Rai, P. K., Kant, V., Sharma, R. K., & Gupta, A. (2023). Process optimization for textile industry-based wastewater treatment via ultrasonic-assisted electrochemical processing. Engineering Applications of Artificial Intelligence, 122, 106162. https://doi.org/10.1016/j.engappai.2023.106162
Rakhmania, Kamyab, H., Yuzir, M. A., Abdullah, N., Quan, L. M., Riyadi, F. A., & Marzouki, R. (2022). Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. Sustainability, 14(4), 1985. https://doi.org/10.3390/su14041985
Rusdianasari, Taqwa, A., Jaksen, & Syakdani, A. (2017). Treatment of landfill leachate by electrocoagulation using aluminum electrodes. MATEC Web of Conferences, 101, 02010. https://doi.org/10.1051/matecconf/201710102010
Saeed, O. F., Hameed, K. W., & Abbar, A. H. (2023). Treatment of vegetable oil refinery wastewater by sequential electrocoagulation-electrooxidation process. Journal of Environmental Management, 342, 118362. https://doi.org/10.1016/j.jenvman.2023.118362
Sahu, O. (2019). Suitability of aluminum material on sugar industry wastewater with chemical and electrochemical treatment processes. International Journal of Industrial Chemistry, 10(4), 335-347. https://doi.org/10.1007/s40090-019-00196-8
Sen, A., Akarsu, C., Bilici, Z., Arslan, H., & Dizge, N. (2024). Treatment of tomato paste wastewater by electrochemical and membrane processes: process optimization and cost calculation. Water Science & Technology, 89(7), 1879-1890. https://doi.org/10.2166/wst.2024.079
Shaban, A., Basiouny, M. E., & AboSiada, O. A. (2023). Evaluation of Using Sequential Electrocoagulation and Chemical Coagulation for Urea Removal from Synthetic and Domestic Wastewater. Water, Air, & Soil Pollution, 234(11), 723. https://doi.org/10.1007/s11270-023-06743-5
Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154-169. https://doi.org/10.1016/j.coelec.2020.05.009
Suhartana. (2021). The effectiveness of anode variations for electrocoagulation and its application for laundry wastewater treatment. Journal of Physics: Conference Series, 1943(1), 012182. https://doi.org/10.1088/1742-6596/1943/1/012182
Tabash, I., Elnakar, H., & Khan, M. F. (2024). Optimization of iron electrocoagulation parameters for enhanced turbidity and chemical oxygen demand removal from laundry greywater. Scientific Reports, 14(1), 16468. https://doi.org/10.1038/s41598-024-67425-8
Tanatti, N. P., & Sezer, M. (2024). Optimizing electrocoagulation for poultry slaughterhouse wastewater treatment: a fuzzy axiomatic design approach. Environmental Science and Pollution Research, 31(21), 31159-31173. https://doi.org/10.1007/s11356-024-33069-4
Teresa Jose, J., K.L., P., Chellappan, S., S., S., Remesh, A., Venkidesh, V., A.J., K., Pugazhendhi, A., Selvam, S., V., B., & M.S., I. (2024). A hybrid electrocoagulation-biocomposite adsorption system for the decolourization of dye wastewater. Environmental Research, 252, 118759. https://doi.org/10.1016/j.envres.2024.118759
Yang, Y., Li, Y., Mao, R., Shi, Y., Lin, S., Qiao, M., & Zhao, X. (2022). Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation: Efficiency and mechanism. Separation and Purification Technology, 286, 120439. https://doi.org/10.1016/j.seppur.2021.120439
Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of The Total Environment, 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095
Zhang, L., Qin, L., Ma, L., Shen, Z., Jin, Y., & Chen, S. (2024). Treatment of electroplating wastewater using electrocoagulation and integrated membrane. Water Science & Technology, 89(9), 2538-2557. https://doi.org/10.2166/wst.2024.136
Zhang, W., Chen, X., Wang, Y., Wu, L., & Hu, Y. (2020). Experimental and Modeling of Conductivity for Electrolyte Solution Systems. ACS Omega, 5(35), 22465-22474. https://doi.org/10.1021/acsomega.0c03013
Zivari-Moshfegh, F., Nematollahi, D., Shanesaz, S., Sadeghinia, A., Abedi, M., Pakizeh, S., Torabi, M., Sepehrmansourie, H., Koohsar, R., Torabi, S., & Masoudinia, N. (2024). Hybrid-process including electrocoagulation for the real carwash wastewater treatment using a new continuous undivided tubular reactor. Chemical Engineering and Processing - Process Intensification, 195, 109625. https://doi.org/10.1016/j.cep.2023.109625
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Delmester Chuquimbalqui-Marina, Yrwin Daniel Azabache-Aliaga, Karina Milagros Ordóñez-Ruiz, Cinthya Melissa Bardalez-Tuesta
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Amazónica de Ciencias Ambientales y Ecológicas (REACAE) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the REACAE.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).