Tratamiento de aguas residuales mediante electrocoagulación: Análisis bibliométrico de publicaciones científicas y revisión de resultados

Autores/as

DOI:

https://doi.org/10.51252/reacae.v4i1.802

Palabras clave:

contaminantes, eficiencia, electrodos, electroquímica, remoción

Resumen

Este artículo de revisión presenta un análisis bibliométrico de 3146 artículos científicos extraídos de la base de datos Scopus, utilizando las palabras clave "Wastewater Electrocoagulation". La selección abarcó publicaciones desde 1975 hasta 2024, distribuidas en 715 fuentes y con la colaboración de 7876 autores. Para llevar a cabo el análisis, se emplearon los programas VosViewer y Bibliometrics. En VosViewer, se utilizó un umbral mínimo de 12 ocurrencias por palabra clave, seleccionando 133 de las 4994 palabras clave registradas mediante el método de asociación normalizada. Estos 133 términos fueron organizados en 8 clústeres, cada uno analizado según los avances recientes en configuraciones de reactores de electrocoagulación, tipos de materiales de electrodos, y la eficiencia en la eliminación de contaminantes tanto en aguas residuales domésticas como industriales. El estudio se enfocó en analizar la evolución de las publicaciones sobre electrocoagulación y en destacar los avances recientes en la remoción de contaminantes utilizando esta tecnología. A través del análisis de los clústeres, se obtuvo una visión integral de las investigaciones actuales, lo que permitió identificar las áreas más innovadoras y emergentes de esta tecnología. Además, se evaluaron distintos métodos y materiales para mejorar la eficiencia del proceso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Ascon, E., Marrufo-Saldana, L., & Neyra-Ascon, W. (2020). Efficiency of Electrocoagulation Method to Reduce COD, BOD and TSS in Tannery Industry Wastewater: Application of the Box-Behnken Design. Leather and Footwear Journal, 20(3), 217-228. https://doi.org/10.24264/lfj.20.3.1

Ahangarnokolaei, M. A., Attarian, P., Ayati, B., Ganjidoust, H., & Rizzo, L. (2021). Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 9(5), 106251. https://doi.org/10.1016/j.jece.2021.106251

Ahmed, T., Khan, M. H. R. B., Ahsan, A., Islam, N., El-Sergany, M., Shafiquzzaman, M., Imteaz, M., & Al-Ansari, N. (2024). Evaluation of the impacts of seawater integration to electrocoagulation for the removal of pollutants from textile wastewater. Environmental Sciences Europe, 36(1), 77. https://doi.org/10.1186/s12302-024-00896-8

Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7), 1648-1662. https://doi.org/10.2166/wst.2021.356

AlJaberi, F. Y., & Hawaas, Z. A. (2023). Electrocoagulation removal of Pb, Cd, and Cu ions from wastewater using a new configuration of electrodes. MethodsX, 10, 101951. https://doi.org/10.1016/j.mex.2022.101951

Almukdad, A., Hawari, A. H., & Hafiz, M. (2021). An Enhanced Electrocoagulation Process for the Removal of Fe and Mn from Municipal Wastewater Using Dielectrophoresis (DEP). Water, 13(4), 485. https://doi.org/10.3390/w13040485

Aoudjehane, M., & Benatallah, M. E. (2015). Treatment of dairy wastewaters by electrocoagulation using iron electrodesTraitement des eaux résiduaires d’une laiterie par électrocoagulation avec des électrodes de fer. Water Quality Research Journal, 50(2), 198-209. https://doi.org/10.2166/wqrjc.2014.053

Ardhianto, R., & Bagastyo, A. Y. (2019). Personal Care Wastewater Treatment With Electro-coagulation and Electro-oxidation. E3S Web of Conferences, 125, 03008. https://doi.org/10.1051/e3sconf/201912503008

Asaithambi, P., Busier Yesuf, M., Milargh Dagmiaw, S., Mekonin Desta, W., Hussen, M., Beyene, D., Sampath, S., Ahmed, M. Z., Sakthivel, P., Thirumurugan, A., Kumar Prajapati, A., & Hariharan, N. M. (2024). Ozone assisted alternating current-electrocoagulation technique for color and COD removal with determination of electrical energy from industrial wastewater. Separation and Purification Technology, 350, 127958. https://doi.org/10.1016/j.seppur.2024.127958

Asfaha, Y. G., Zewge, F., Yohannes, T., & Kebede, S. (2022a). Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Chemosphere, 302, 134706. https://doi.org/10.1016/j.chemosphere.2022.134706

Asfaha, Y. G., Zewge, F., Yohannes, T., & Kebede, S. (2022b). Investigation of cotton textile industry wastewater treatment with electrocoagulation process: performance, mineralization, and kinetic study. Water Science and Technology, 85(5), 1549-1567. https://doi.org/10.2166/wst.2022.061

Benhadji, A., & Ahmed, M. T. (2020). Yellow 2G dye degradation by electro-Fenton process using steel electrode as catalysis and its phytotoxicity effect. Water Science and Technology. https://doi.org/10.2166/wst.2020.361

Biao, W., Hashim, N. A., Rabuni, M. F. Bin, Lide, O., & Ullah, A. (2024). Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. Chemosphere, 361, 142546. https://doi.org/10.1016/j.chemosphere.2024.142546

Castillo-Suárez, L. A., Linares-Hernández, I., Martínez-Miranda, V., Garduño-Pineda, L., Castañeda-Juárez, M., & Teutli-Sequeira, E. A. (2024). Denim industry wastewater treatment by a heterogeneous solar-Fenton process catalyzed by Fe supported on recycled polyethylene terephthalate (PET) by ultrasonic modification. Journal of Environmental Management, 351, 119929. https://doi.org/10.1016/j.jenvman.2023.119929

Chen, P., Li, J., & Xie, N. (2023). Study on Influencing Parameters of Total Phosphorus Degradation in Cattle Farm Wastewater by Electrocoagulation Using Magnesium, Aluminum, and Iron Electrodes. Water, 15(23), 4134. https://doi.org/10.3390/w15234134

Cruz, K. D., Villanueva, B. H. A., Martos, M. K. D., Asuncion, A. G., & Esguerra, M. J. S. (2020). Ammonia, oil and grease, and COD reduction of septage wastewater via electrocoagulation using black iron electrodes. IOP Conference Series: Earth and Environmental Science, 612(1), 012035. https://doi.org/10.1088/1755-1315/612/1/012035

Da Silva, L. T. V., de Oliveira, A. G., Ribeiro, J. P., Lopes, A. F., da Silva Costa, R., Neto, E. F. A., Carvalhod, T. V., Romero, F. B., Santos Sales, J. V., de Souza, F. T. C., & Nascimento, R. F. do. (2024). Electrocoagulation cell for the production of hydrogen without carbon emission and simultaneous treatment of textile wastewater. International Journal of Hydrogen Energy, 64, 906-913. https://doi.org/10.1016/j.ijhydene.2024.03.310

Dermentzis, K., Karakosta, K., Kosheleva, R., & Kokkinos, N. (2020). Electrochemical Remediation of Phthalocyanine Dye Wastewater and simultaneous Hydrogen Production. Journal of Engineering Science and Technology Review, 13(6), 22-25. https://doi.org/10.25103/jestr.136.04

Esfandyari, Y., Saeb, K., Tavana, A., Rahnavard, A., & Fahimi, F. G. (2019). Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Science and Technology, 80(12), 2422-2429. https://doi.org/10.2166/wst.2020.003

Galvão, N., de Souza, J. B., & Vidal, C. M. de S. (2020). Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. Journal of Environmental Chemical Engineering, 8(5), 104368. https://doi.org/10.1016/j.jece.2020.104368

Gao, L., Liu, W., Cui, M., Zhu, Y., Wang, L., Wang, A., & Huang, C. (2021). Enhanced methane production in an up-flow microbial electrolysis assisted reactors: Hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes. Water Research, 191, 116813. https://doi.org/10.1016/j.watres.2021.116813

Ghernaout, D., Elboughdiri, N., & Alghamdi, A. (2020). The role of electrocoagulation process in the removal of emerging pollutants. International Journal of Environmental Science and Technology, 17(6), 2801-2816.

Jiang, C., Liu, Y., Zhang, C., & Li, X. (2023). Study on influencing parameters and long-term operation of electrocoagulation phosphorus removal from small rural domestic sewage. Water Science & Technology, 87(8), 1866-1878. https://doi.org/10.2166/wst.2023.112

Koyuncu, S., & Arıman, S. (2020). Domestic wastewater treatment by real-scale electrocoagulation process. Water Science and Technology, 81(4), 656-667. https://doi.org/10.2166/wst.2020.128

Kumar, A., & Pal, P. (2019). Assessing the feasibility of industrial wastewater treatment using AOPs coupled with membrane technologies. Journal of Cleaner Production, 221, 693-706.

Lamhar, R., Kambuyi, T. N., Bejjany, B., Kherbeche, A., Digua, K., & Dani, A. (2024). Electrocoagulation for the decolorization of textile wastewater in single-channel reactor: Response surface methodology for optimization and a novel model exploitation. Journal of Cleaner Production, 450, 141900. https://doi.org/10.1016/j.jclepro.2024.141900

Li, Y., Zhao, X., & He, Z. (2021). Integrating membrane technology in sustainable wastewater treatment. Water Research, 190, 116682.

Liu, R., Wei, W., & Zhao, X. (2020). Sustainable approaches in advanced wastewater treatment: A review of current technologies. Environmental Science and Pollution Research, 27(25), 31022-31036.

Mao, Y., Zhao, Y., & Cotterill, S. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15(8), 1455. https://doi.org/10.3390/w15081455

Mehri, M., Fallah, N., & Nasernejad, B. (2021). Mechanisms of heavy metal and oil removal from synthetic saline oilfield produced water by electrocoagulation. npj Clean Water, 4(1), 45. https://doi.org/10.1038/s41545-021-00135-0

Mengistu, L. R., Samuel, Z. A., Kitila, C. D., & Bayu, A. B. (2022). Comparison Study on Sonodirect and Sonoalternate Current Electrocoagulation Process for Domestic Wastewater Treatment. International Journal of Analytical Chemistry, 2022, 1-13. https://doi.org/10.1155/2022/3477995

Mielcarek, A., Bryszewski, K. Ł., Rodziewicz, J., Kłobukowska, K., & Janczukowicz, W. (2024). Phosphorus Removal Rate and Efficiency in an Electrochemical Sequencing Reactor for the Treatment of Wastewater with Low Organic Carbon Content. Energies, 17(6), 1352. https://doi.org/10.3390/en17061352

Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of The Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971

Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5

Moradi, M., Vasseghian, Y., Arabzade, H., & Mousavi Khaneghah, A. (2021). Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook. Chemosphere, 263, 128314. https://doi.org/10.1016/j.chemosphere.2020.128314

Moreno-Cabrera, G. A., Alvarez-Arteaga, G., Orozco-Hernández, M. E., & Reyes-Zuazo, M. A. (2021). Tratamiento primario de aguas almacenadas en estanques rústicos mediante la aplicación de coagulantes químicos y biológicos. Ecosistemas y Recursos Agropecuarios, 8(2). https://doi.org/10.19136/era.a8n2.2734

Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032

Muniasamy, S. K., Gameda, T. T., Mallaian, L. S., Rengaraju, I., Segaran, J., Periyasamy, Y., Murugesan, P., & Subramanian, S. (2022). Investigation on Solar-Powered Electrocoagulation (SPEC) for the Treatment of Domestic Wastewater (DWW). Advances in Materials Science and Engineering, 2022, 1-6. https://doi.org/10.1155/2022/5389340

Nandi, B. K., & Patel, S. (2017). Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, S2961-S2968. https://doi.org/10.1016/j.arabjc.2013.11.032

Nidheesh, P. V., Murshid, A., & Chanikya, P. (2023). Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. Chemosphere, 338, 139449. https://doi.org/10.1016/j.chemosphere.2023.139449

Nnaji, P. C., Ume, C. S., Obasi, R. U., Anadebe, V. C., Ezemagu, I. G., Okeke, B. U., Ude, C. J., & Onukwuli, O. D. (2023). Machine learning-based performance evaluation and sludge characterization studies of oxidized starch-aluminum electrode assisted by direct current treatment of dye laden wastewater. Results in Engineering, 20, 101576. https://doi.org/10.1016/j.rineng.2023.101576

Obi, C. C., Nwabanne, J. T., Igwegbe, C. A., Abonyi, M. N., Umembamalu, C. J., & Kamuche, T. T. (2024). Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. Journal of Environmental Management, 353, 120161. https://doi.org/10.1016/j.jenvman.2024.120161

Oktiawan, W., Priyambada, I. B., Aji, S., & Budi, F. S. (2021). Effect of current strength on electrocoagulation using Al-Fe electrodes in COD and TSS removal of domestic wastewater. IOP Conference Series: Earth and Environmental Science, 623(1), 012080. https://doi.org/10.1088/1755-1315/623/1/012080

Omwene, P. I., & Kobya, M. (2018). Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study. Process Safety and Environmental Protection, 116, 34-51. https://doi.org/10.1016/j.psep.2018.01.005

Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65-73. https://doi.org/10.1016/j.ecoleng.2018.08.025

Öztel, M. D., Kuleyin, A., & Akbal, F. (2020). Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Science and Technology, 82(4), 663-672. https://doi.org/10.2166/wst.2020.357

Pani, N., T. S., A. S., Menon, P. M., Boruah, S., Patel, B., & Kaul, D. S. (2022). Electrocoagulation followed by sound agitation for removal of nitrogen and carbon-based pollutants from industrial wastewater. Water Science and Technology, 86(11), 2861-2877. https://doi.org/10.2166/wst.2022.364

Pasciucco, E., Pasciucco, F., Iannelli, R., & Pecorini, I. (2024). A Fenton-based approach at neutral and un-conditioned pH for recalcitrant COD removal in tannery wastewater: Experimental test and sludge characterization. Science of The Total Environment, 926, 172070. https://doi.org/10.1016/j.scitotenv.2024.172070

Pereira, A. S. A. de P., Silva, T. A., Magalhães, I. B., Ferreira, J., Braga, M. Q., Lorentz, J. F., Assemany, P. P., Couto, E. de A. do, & Calijuri, M. L. (2024). Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvestinga technologies. Science of The Total Environment, 920, 170918. https://doi.org/10.1016/j.scitotenv.2024.170918

Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1-12. https://doi.org/10.1016/j.wri.2013.09.005

Rai, P. K., Kant, V., Sharma, R. K., & Gupta, A. (2023). Process optimization for textile industry-based wastewater treatment via ultrasonic-assisted electrochemical processing. Engineering Applications of Artificial Intelligence, 122, 106162. https://doi.org/10.1016/j.engappai.2023.106162

Rakhmania, Kamyab, H., Yuzir, M. A., Abdullah, N., Quan, L. M., Riyadi, F. A., & Marzouki, R. (2022). Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. Sustainability, 14(4), 1985. https://doi.org/10.3390/su14041985

Rusdianasari, Taqwa, A., Jaksen, & Syakdani, A. (2017). Treatment of landfill leachate by electrocoagulation using aluminum electrodes. MATEC Web of Conferences, 101, 02010. https://doi.org/10.1051/matecconf/201710102010

Saeed, O. F., Hameed, K. W., & Abbar, A. H. (2023). Treatment of vegetable oil refinery wastewater by sequential electrocoagulation-electrooxidation process. Journal of Environmental Management, 342, 118362. https://doi.org/10.1016/j.jenvman.2023.118362

Sahu, O. (2019). Suitability of aluminum material on sugar industry wastewater with chemical and electrochemical treatment processes. International Journal of Industrial Chemistry, 10(4), 335-347. https://doi.org/10.1007/s40090-019-00196-8

Sen, A., Akarsu, C., Bilici, Z., Arslan, H., & Dizge, N. (2024). Treatment of tomato paste wastewater by electrochemical and membrane processes: process optimization and cost calculation. Water Science & Technology, 89(7), 1879-1890. https://doi.org/10.2166/wst.2024.079

Shaban, A., Basiouny, M. E., & AboSiada, O. A. (2023). Evaluation of Using Sequential Electrocoagulation and Chemical Coagulation for Urea Removal from Synthetic and Domestic Wastewater. Water, Air, & Soil Pollution, 234(11), 723. https://doi.org/10.1007/s11270-023-06743-5

Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154-169. https://doi.org/10.1016/j.coelec.2020.05.009

Suhartana. (2021). The effectiveness of anode variations for electrocoagulation and its application for laundry wastewater treatment. Journal of Physics: Conference Series, 1943(1), 012182. https://doi.org/10.1088/1742-6596/1943/1/012182

Tabash, I., Elnakar, H., & Khan, M. F. (2024). Optimization of iron electrocoagulation parameters for enhanced turbidity and chemical oxygen demand removal from laundry greywater. Scientific Reports, 14(1), 16468. https://doi.org/10.1038/s41598-024-67425-8

Tanatti, N. P., & Sezer, M. (2024). Optimizing electrocoagulation for poultry slaughterhouse wastewater treatment: a fuzzy axiomatic design approach. Environmental Science and Pollution Research, 31(21), 31159-31173. https://doi.org/10.1007/s11356-024-33069-4

Teresa Jose, J., K.L., P., Chellappan, S., S., S., Remesh, A., Venkidesh, V., A.J., K., Pugazhendhi, A., Selvam, S., V., B., & M.S., I. (2024). A hybrid electrocoagulation-biocomposite adsorption system for the decolourization of dye wastewater. Environmental Research, 252, 118759. https://doi.org/10.1016/j.envres.2024.118759

Yang, Y., Li, Y., Mao, R., Shi, Y., Lin, S., Qiao, M., & Zhao, X. (2022). Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation: Efficiency and mechanism. Separation and Purification Technology, 286, 120439. https://doi.org/10.1016/j.seppur.2021.120439

Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of The Total Environment, 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095

Zhang, L., Qin, L., Ma, L., Shen, Z., Jin, Y., & Chen, S. (2024). Treatment of electroplating wastewater using electrocoagulation and integrated membrane. Water Science & Technology, 89(9), 2538-2557. https://doi.org/10.2166/wst.2024.136

Zhang, W., Chen, X., Wang, Y., Wu, L., & Hu, Y. (2020). Experimental and Modeling of Conductivity for Electrolyte Solution Systems. ACS Omega, 5(35), 22465-22474. https://doi.org/10.1021/acsomega.0c03013

Zivari-Moshfegh, F., Nematollahi, D., Shanesaz, S., Sadeghinia, A., Abedi, M., Pakizeh, S., Torabi, M., Sepehrmansourie, H., Koohsar, R., Torabi, S., & Masoudinia, N. (2024). Hybrid-process including electrocoagulation for the real carwash wastewater treatment using a new continuous undivided tubular reactor. Chemical Engineering and Processing - Process Intensification, 195, 109625. https://doi.org/10.1016/j.cep.2023.109625

Descargas

Publicado

2025-01-20

Cómo citar

Chuquimbalqui-Marina, D., Azabache-Aliaga, Y. D., Ordóñez-Ruiz, K. M., & Bardalez-Tuesta, C. M. (2025). Tratamiento de aguas residuales mediante electrocoagulación: Análisis bibliométrico de publicaciones científicas y revisión de resultados. Revista Amazónica De Ciencias Ambientales Y Ecológicas, 4(1), e802. https://doi.org/10.51252/reacae.v4i1.802

Artículos similares

<< < 1 2 

También puede {advancedSearchLink} para este artículo.