Efecto del polvo de semilla de Moringa oleífera sobre la turbidez de las aguas residuales en Cajamarca, Perú

Autores/as

  • Persi Vera-Zelada Universidad Nacional de Jaén https://orcid.org/0000-0002-2881-0959
  • Gustavo Martínez-Sovero Universidad Nacional de Jaén
  • Luis Alberto Vera-Zelada Universidad Nacional de Cajamarca
  • Judith Rossmery Minchán-Sapo Universidad Privada Antonio Guillermo Urrelo
  • Dixon Brit Pastor-Collantes Universidad Privada Antonio Guillermo Urrelo

DOI:

https://doi.org/10.51252/reacae.v2i2.510

Palabras clave:

agua residual, coagulante, floculante

Resumen

Los procesos de tratamiento utilizados en las principales ciudades de Perú no son lo suficientemente eficientes para eliminar las aguas residuales. El objetivo fue evaluar el efecto del polvo de semilla de Moringa oleifera sobre la turbidez de las aguas residuales de los pozos de oxidación del distrito de Cajamarca, 2020. En la prueba se recolectaron siete muestras de agua residual en vasos de precipitados de 500 mL, uno de los cuales sirvió como control para medir los parámetros considerados (turbidez, conductividad, temperatura y pH). Luego, se mezclaron dosis de coagulante (0,5; 0,8; 1 g) en tres muestras de agua residual durante un período de 10 minutos a 150 y 200 RPM. Los diferentes pesos de la Moringa oleifera influyen en la turbidez del agua residual de manera inversa. Los datos no manifiestan diferencia significativa entre la turbidez y las revoluciones (p 0,67) indicando que los valores son similares o que no existe diferencia. Los diferentes pesos de la Moringa influyen en la turbidez del agua residual, la revolución o velocidad de agitación óptima es el de 200 RPM, el peso óptimo es el de 0,8 g. La Moringa disminuye el pH y aumenta la conductividad y la temperatura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adelodun, B., Ogunshina, M. S., Ajibade, F. O., Abdulkadir, T. S., Bakare, H. O., & Choi, K. S. (2020). Kinetic and Prediction Modeling Studies of Organic Pollutants Removal from Municipal Wastewater using Moringa oleifera Biomass as a Coagulant. Water, 12(7), 2052. https://doi.org/10.3390/w12072052

Adelodun, B., Tiamiyu, A. O., Ajibade, F. O., Odey, G., Ibrahim, R. G., Goala, M., Bakare, H. O., Ajibade, T. F., Adeniran, J. A., Adeniran, K. A., & Choi, K. S. (2021). Presence, detection, and persistence of SARS-CoV-2 in wastewater and the sustainable remedial measures. In Environmental and Health Management of Novel Coronavirus Disease (COVID-19 ) (pp. 91–114). Elsevier. https://doi.org/10.1016/B978-0-323-85780-2.00014-7

Adeniran, K. A., Akpenpuun, T. D., Akinyemi, B. A., & Wasiu, R. A. (2017). Effectiveness of Moringa oleifera seed as a coagulant in domestic wastewater treatment. African Journal of Science, Technology, Innovation and Development, 9(3), 323–328. https://doi.org/10.1080/20421338.2017.1327475

Al Azharia Jahn, S. (1988). Using Moringa Seeds as Coagulants in Developing Countries. Journal - American Water Works Association, 80(6), 43–50. https://doi.org/10.1002/j.1551-8833.1988.tb03052.x

Alsbaiee, A., Smith, B. J., Xiao, L., Ling, Y., Helbling, D. E., & Dichtel, W. R. (2016). Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 529(7585), 190–194. https://doi.org/10.1038/nature16185

Bahrodin, M. B., Zaidi, N. S., Hussein, N., Sillanpää, M., Prasetyo, D. D., & Syafiuddin, A. (2021). Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant. Current Pollution Reports, 7(3), 379–391. https://doi.org/10.1007/s40726-021-00191-7

Basra, S. M. A., Iqbal, Z., Khalil-ur-Rehman, Hafeez-Ur-Rehman, & Ejaz, M. F. (2014). Time Course Changes in pH, Electrical Conductivity and Heavy Metals (Pb, Cr) of Wastewater Using Moringa oleifera Lam. Seed and Alum, a Comparative Evaluation. Journal of Applied Research and Technology, 12(3), 560–567. https://doi.org/10.1016/S1665-6423(14)71635-9

Beltrán‐Heredia, J., & Sánchez‐Martín, J. (2009). Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent. Environmental Technology, 30(6), 525–534. https://doi.org/10.1080/09593330902831176

Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589

Daud, M. K., Nafees, M., Ali, S., Rizwan, M., Bajwa, R. A., Shakoor, M. B., Arshad, M. U., Chatha, S. A. S., Deeba, F., Murad, W., Malook, I., & Zhu, S. J. (2017). Drinking Water Quality Status and Contamination in Pakistan. BioMed Research International, 2017, 1–18. https://doi.org/10.1155/2017/7908183

Fernandez-Cassi, X., Timoneda, N., Martínez-Puchol, S., Rusiñol, M., Rodriguez-Manzano, J., Figuerola, N., Bofill-Mas, S., Abril, J. F., & Girones, R. (2018). Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. Science of The Total Environment, 618, 870–880. https://doi.org/10.1016/j.scitotenv.2017.08.249

Franco, M., Silva, G. K. e, & Paterniani, J. E. S. (2012). Water treatment by multistage filtration system with natural coagulant from Moringa oleifera seeds. Engenharia Agrícola, 32(5), 989–997. https://doi.org/10.1590/S0100-69162012000500018

Huey, G. M., & Meyer, M. L. (2010). Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin. Water, 2(2), 273–284. https://doi.org/10.3390/w2020273

Khan, N. A., Ahmed, S., Vambol, S., Vambol, V., & Farooqi, I. H. (2019). Field hospital wastewater treatment scenario. Ecological Questions, 30(3), 57. https://doi.org/10.12775/EQ.2019.022

Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

Korshin, G. V., Sgroi, M., & Ratnaweera, H. (2018). Spectroscopic surrogates for real time monitoring of water quality in wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 12–19. https://doi.org/10.1016/j.coesh.2017.11.003

Lin, L., Yang, H., & Xu, X. (2022). Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.880246

Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of The Total Environment, 752, 142168. https://doi.org/10.1016/j.scitotenv.2020.142168

Muniz, G. L., Silva, T. C. F. da, & Borges, A. C. (2020). Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. Science of The Total Environment, 744, 140864. https://doi.org/10.1016/j.scitotenv.2020.140864

Nath, A., Mishra, A., & Pande, P. P. (2021). A review natural polymeric coagulants in wastewater treatment. Materials Today: Proceedings, 46, 6113–6117. https://doi.org/10.1016/j.matpr.2020.03.551

Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M., & Hernández, F. (2021). Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674. https://doi.org/10.1016/j.envint.2021.106674

Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10(5), 89. https://doi.org/10.3390/membranes10050089

Owodunni, A. A., & Ismail, S. (2021). Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—A review. Journal of Water Process Engineering, 42, 102096. https://doi.org/10.1016/j.jwpe.2021.102096

Ribeiro, J. V. M., Andrade, P. V., & Reis, A. G. dos. (2019). Moringa oleifera seed as a natural coagulant to treat low-turbidity water by in-line filtration. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 14(6), 1. https://doi.org/10.4136/ambi-agua.2442

Smyrilli, C., Selvakumaran, S., Alderson, M., Pizarro, A., Almendrades, D., Harris, B., & Bustamante, A. (2018). Sustainable decentralised wastewater treatment schemes in the context of Lobitos, Peru. Journal of Environmental Engineering and Science, 13(1), 8–16. https://doi.org/10.1680/jenes.17.00023

Suhartini, S., Hidayat, N., & Rosaliana, E. (2013). Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. International Journal Of Recycling of Organic Waste in Agriculture, 2(1), 12. https://doi.org/10.1186/2251-7715-2-12

Tat, W. K., Idris, A., Noor, M. J. M. M., Mohamed, T. A., Ghazali, A. H., & Muyibi, S. A. (2010). Optimization study on sewage sludge conditioning using Moringa oleifera seeds. Desalination and Water Treatment, 16(1–3), 402–410. https://doi.org/10.5004/dwt.2010.1271

Tomanguillo Chumbe, M. del P. (2018). Derecho a la verdad como una norma imperativa Internacional y al Responsabilidad de los estados frente a este derecho [Universidad Nacional de TrujilloDerecho a la verdad como una norma imperativa Internacional y al Responsabilidad de los]. http://dspace.unitru.edu.pe/handle/UNITRU/11604

Tomperi, J., Isokangas, A., Tuuttila, T., & Paavola, M. (2022). Functionality of turbidity measurement under changing water quality and environmental conditions. Environmental Technology, 43(7), 1093–1101. https://doi.org/10.1080/09593330.2020.1815860

Vega Andrade, P., Palanca, C. F., de Oliveira, M. A. C., Ito, C. Y. K., & dos Reis, A. G. (2021). Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: Physicochemical, cytotoxicity and bacterial load evaluation. Journal of Water Process Engineering, 40, 101859. https://doi.org/10.1016/j.jwpe.2020.101859

Villaseñor-Basulto, D. L., Astudillo-Sánchez, P. D., del Real-Olvera, J., & Bandala, E. R. (2018). Wastewater treatment using Moringa oleifera Lam seeds: A review. Journal of Water Process Engineering, 23, 151–164. https://doi.org/10.1016/j.jwpe.2018.03.017

Wang, D., Ha, M., & Qiao, J. (2021). Data-Driven Iterative Adaptive Critic Control Toward an Urban Wastewater Treatment Plant. IEEE Transactions on Industrial Electronics, 68(8), 7362–7369. https://doi.org/10.1109/TIE.2020.3001840

Zapana, J. S. P., Arán, D. S., Bocardo, E. F., & Harguinteguy, C. A. (2020). Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru. International Journal of Environmental Science and Technology, 17(11), 4419–4430. https://doi.org/10.1007/s13762-020-02797-8

REACAE

Publicado

2023-07-10

Cómo citar

Vera-Zelada , P., Martínez-Sovero , G., Vera-Zelada, L. A., Minchán-Sapo, J. R., & Pastor-Collantes, D. B. (2023). Efecto del polvo de semilla de Moringa oleífera sobre la turbidez de las aguas residuales en Cajamarca, Perú. Revista Amazónica De Ciencias Ambientales Y Ecológicas, 2(2), e510. https://doi.org/10.51252/reacae.v2i2.510

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.