Global bibliometric analysis of hydrocarbon-degrading bacteria in soils between 2018 and 2025: taxonomic trends, bioremediation efficiency, and ecological dynamics

Authors

DOI:

https://doi.org/10.51252/reacae.v5i1.1342

Keywords:

bioaugmentation, biosurfactants, microbial consortia, petroleum hydrocarbons, degraded soils

Abstract

The growing need for sustainable strategies to treat hydrocarbon-contaminated soils justified this review, whose objective was to bibliometrically analyze the global scientific production on hydrocarbon-degrading bacteria in soils during the 2018–2025 period. A systematic and documentary review methodology was applied, based on the retrieval, depuration, and normalization of one hundred articles indexed in Scopus and Web of Science, whose metadata were processed using VOSviewer to evaluate collaboration patterns, keyword co-occurrence, and thematic trends. The analysis showed that research activity increased notably after 2020, highlighting lines focused on bioaugmentation, the use of autochthonous microbial consortia, biosurfactants, and biochar to enhance the degradation of TPH and diesel-range fractions. Likewise, genera such as Pseudomonas, Bacillus, Rhodococcus, and Sphingomonas exhibited the highest frequencies and thematic linkages. The results also revealed research gaps related to the limited standardization of kinetic assays and the scarce validation of field-scale studies. In conclusion, this review identified trends, knowledge gaps, and research opportunities, confirming the relevance of integrating microbial, ecological, and technological approaches to optimize the bioremediation of hydrocarbon-contaminated soils.

Downloads

Download data is not yet available.

References

Abbas, R. I., & Flayeh, H. M. (2024). Enhanced bioremediation of diesel oil contaminants in soil. Nativa, 12(2), 359-369. Scopus. https://doi.org/10.31413/nat.v12i2.17526

Abdel-Razek, A. S., El-Sheikh, H. H., Suleiman, W. B., Taha, T. H., & Mohamed, M. K. (2020). Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: Safe approach. Desalination and Water Treatment, 181, 131-140. Scopus. https://doi.org/10.5004/dwt.2020.25109

Abubakar, A., Abioye, O. P., Aransiola, S. A., Maddela, N. R., & Prasad, R. (2024). Crude oil biodegradation potential of lipase produced by Bacillus subtilis and Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil. Environmental Chemistry and Ecotoxicology, 6, 26-32. Scopus. https://doi.org/10.1016/j.enceco.2023.12.001

Adeleye, A. O., Yerima, M. B., Nkereuwem, M. E., Onokebhagbe, V. O., Shiaka, G. P., Amoo, A. O., Asaju, C. I., Yalwaji, B., & Ishaq, S. M. (2022). Effect of bacterial co-culture and organic amendments on the bioremediation of hydrocarbons in a soil contaminated with spent engine oil. Engenharia Sanitaria e Ambiental, 27(5). Scopus. https://doi.org/10.4025/actascibiolsci.v44i1.62289

Aladwan, M. M., Dababneh, B. F., Farah, H. S., & Abusalah, M. A. H. (2024). Identification of Oil Degrading Bacteria from Oil-Contaminated Soil in the Northeastern Part of Jordan. Inzynieria Ekologiczna, 25(5), 306-320. Scopus. https://doi.org/10.12911/22998993/186502

Al-Dhabaan, F. A. (2019). Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6), 1247-1252. Scopus. https://doi.org/10.1016/j.sjbs.2018.05.029

Al-Hisnawi, A. A., Yasser, Y. K., Kadhum, N. H., & Mustafa, J. M. (2022). Hydrocarbon degradation test among the microbial community in oil-contaminated soil of power generators in Kerbala city, Iraq. Iraqi Journal of Science, 63(7), 2900-2913. Scopus. https://doi.org/10.24996/ijs.2022.63.7.14

Ali, M. F., M-Ridha, M. J., & Taly, A. H. (2018). Optimization kerosene bio-degradation by a local soil bacterium isolate Klebsiella pneumoniae Sp. Pneumonia. Journal of Pure and Applied Microbiology, 12(4), 2049-2057. Scopus. https://doi.org/10.22207/JPAM.12.4.41

Almazan-Casteñada, P. J., Alarcón, A., García-Barradas, Ó., Mendarte-Alquisira, C., & Ferrera-Cerrato, R. (2024). Phytotoxicity and phytoremediation of a gasoline-contaminated soil utilizing sunflower plants assisted with native rhizosphere bacteria. Revista Internacional de Contaminacion Ambiental, 40, 251-262. Scopus. https://doi.org/10.20937/RICA.55039

Al-Taee, Z. M., Liqaa, Y. M., Lilo, R. A., Kadhum, A. M., Mumtaz, F., Abdulabbas, H. S., Yousif, E. M., Shaker, A. T., & Al-Kinani, M. A. A. (2025). Isolation and Identification of Pseudomonas aeruginosa from Soil Contaminated with Petroleum Products. Journal of Pure and Applied Microbiology, 19(3), 1955-1961. Scopus. https://doi.org/10.22207/JPAM.19.3.22

Assil, Z., Esegbue, O., Mašek, O., Gutiérrez, T., & Free, A. (2021). Specific enrichment of hydrocarbonclastic bacteria from diesel-amended soil on biochar particles. Science of the Total Environment, 762. Scopus. https://doi.org/10.1016/j.scitotenv.2020.143084

Basim, Y., Mohebali, G., Jorfi, S., Nabizadeh Nodehi, R., Ahmadi-Moghadam, M. A., Ghadiri, A., & Jaafarzadeh Haghighifard, N. J. (2020). Biodegradation of total petroleum hydrocarbons in contaminated soils using indigenous bacterial consortium. Environmental Health Engineering and Management, 7(2), 127-133. Scopus. https://doi.org/10.34172/EHEM.2020.15

Basim, Y., Mohebali, G., Jorfi, S., Nabizadeh Nodehi, R., Ahmadi-Moghadam, M. A., Ghadiri, A., & Jaafarzadeh Haghighifard, N. J. (2022). Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran. Journal of Environmental Health Science and Engineering, 20(2), 601-608. Scopus. https://doi.org/10.1007/s40201-020-00592-8

Benattouche, Z., Belkhodja, H., Bouhadi, D., & Ahmed, A. (2024). Use of Biotechnology for Environmental Decontamination: Isolation of Bacteria Degrading Hydrocarbons From Soil Contaminated With Diesel Oil. Avicenna Journal of Environmental Health Engineering, 11(2), 70-74. Scopus. https://doi.org/10.34172/ajehe.5478

Bonomo, M. G., Calabrone, L., Scrano, L., Bufo, S. A., Di Tomaso, K., Buongarzone, E., & Salzano, G. (2022). Metagenomic monitoring of soil bacterial community after the construction of a crude oil flowline. Environmental Monitoring and Assessment, 194(2). Scopus. https://doi.org/10.1007/s10661-021-09637-3

Boopathy, S., Appavoo, M. S., & Radhakrishnan, I. (2021). Sunflower seed husk combined with poultry droppings to degrade petroleum hydrocarbons in crude oil-contaminated soil. Environmental Engineering Research, 26(5). Scopus. https://doi.org/10.4491/eer.2020.361

Brzeszcz, J., Skalski, T., Jankowski, L., & Kapusta, P. (2023). How do microbial communities deal with chronic hydrocarbon presence in oil seep soils? Data from historical hand-dug oil wells. Land Degradation and Development, 34(5), 1283-1296. Scopus. https://doi.org/10.1002/ldr.4531

Brzeszcz, J., Steliga, T., Ryszka, P., Kaszycki, P., & Kapusta, P. (2024). Bacteria degrading both n-alkanes and aromatic hydrocarbons are prevalent in soils. Environmental Science and Pollution Research, 31(4), 5668-5683. Scopus. https://doi.org/10.1007/s11356-023-31405-8

Çevik, P. K., Eroğlu, A. B., Yıldızlı, G., Coşan, D., Kantar, Ç., & Coral, G. (2019). Isolation and characterization of diethyl phthalate degrading bacteria from crude oil contaminated soil. Journal of Environmental Biology, 40(3), 275-282. Scopus. https://doi.org/10.22438/jeb/40/3/MRN-959

Chai, X., Wang, M., Fu, X., Zhang, W., Huang, Y., Germaine, K. J., & Wang, J. (2023). Shift of combined ecotoxicity index in petroleum polluted soils during a bacterial remediation. Frontiers in Environmental Science, 11. Scopus. https://doi.org/10.3389/fenvs.2023.1141562

Chang, Y.-C., Shimadzu, M., Choi, D., Sarkar, O., & Venkateswar Reddy, M. (2025). An enhanced degradation of polyhydroxyalkanoates (PHAs) using adaptive laboratory methods: A sustainable approach alternates to genetic engineering. Chemosphere, 387. Scopus. https://doi.org/10.1016/j.chemosphere.2025.144654

Chen, X., Meng, R., Geng, M., Zhou, J., & Pu, Y. (2024). Removal of benzo[a]pyrene by a highly degradable microbial community immobilized by modified wheat straw biochar. Environmental Science and Pollution Research, 31(59), 66742-66758. Scopus. https://doi.org/10.1007/s11356-024-35717-1

Crampon, M., Cazals, F., Senechaud, J., Perrault, A., Omirbekov, S., & Colombano, S. (2025). Impact of soil washing using synthetic or biological surfactants, as liquid or foam, on long-term biodegradation potential and soil microbial biodiversity in hydrocarbon-polluted soil: An experimental study. Journal of Hazardous Materials Advances, 19. Scopus. https://doi.org/10.1016/j.hazadv.2025.100855

Crosby, T. M., & Stadler, L. B. (2025). Plasmid Backbone Impacts Conjugation Rate, Transconjugant Fitness, and Community Assembly of Genetically Bioaugmented Soil Microbes for PAH Bioremediation. ACS Environmental Au, 5(2), 241-252. Scopus. https://doi.org/10.1021/acsenvironau.4c00123

Cui, J.-Q., He, Q.-S., Liu, M.-H., Chen, H., Sun, M.-B., & Wen, J.-P. (2020). Comparative study on different remediation strategies applied in petroleum-contaminated soils. International Journal of Environmental Research and Public Health, 17(5). Scopus. https://doi.org/10.3390/ijerph17051606

Curiel-Alegre, S., de la Fuente-Vivas, D., Khan, A. H. A., García-Tojal, J., Velasco-Arroyo, B., Rumbo, C., Soja, G., Rad, C., & Barros, R. (2024). Unveiling the capacity of bioaugmentation application, in comparison with biochar and rhamnolipid for TPHs degradation in aged hydrocarbons polluted soil. Environmental Research, 252. Scopus. https://doi.org/10.1016/j.envres.2024.118880

da Silva Correa, H., & Maranho, L. T. (2021). The potential association of Echinochloa polystachya (Kunth) Hitchc. With bacterial consortium for petroleum degradation in contaminated soil. SN Applied Sciences, 3(1). Scopus. https://doi.org/10.1007/s42452-020-04070-6

Dai, Y., Liu, R., Zhou, Y., Li, N., Hou, L., Ma, Q., & Gao, B. (2020). Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environment International, 136. Scopus. https://doi.org/10.1016/j.envint.2019.105421

Dehghani, M., Taatizadeh, S. B., Samaei, M. R., Shamsedini, N., Shahsavani, S., Derakhshan, Z., & Oliveri Conti, G. O. (2018). Impact of bioaugmentation of soil with n-hexadecane-degrading bacteria and phosphorus source on the rate of biodegradation in a soil-slurry system. Global Nest Journal, 20(3), 504-511. Scopus. https://doi.org/10.30955/gnj.002607

Espinosa-López, F., Pelcastre-Guzmán, K., Cerón-Nava, A., Rivera-Noriega, A., Loza-Mejía, M. A., & Islas-García, A. (2025). Sustainable Remediation Using Hydrocarbonoclastic Bacteria for Diesel-Range Hydrocarbon Contamination in Soil: Experimental and In Silico Evaluation. Sustainability (Switzerland), 17(12). Scopus. https://doi.org/10.3390/su17125535

Faisal, Z. G., Jameel, M. M., & Abdullah, O. A. (2025). Isolation and Identification of Black Oil-Degrading Bacteria From Lubricant-Contaminated Soil in Northern Baghdad, Iraq. Scientific World Journal, 2025(1). Scopus. https://doi.org/10.1155/tswj/4009105

Frank, Y. A., Nikitchuk, K. L., Sapega, A. A., Luk‘yanova, E. A., Ivasenko, D. A., Kosov, A. V., Gerasimchuk, A. L., & Evseeva, N. S. (2020). Improvement of the efficiency of oil-contamined soils remediation in the natural conditions of the north tomsk region and the nearby regions by indigenous microorganisms application. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 331(9), 130-139. Scopus. https://doi.org/10.18799/24131830/2020/9/2815

Gan, L., Wang, J.-P., & Wu, Q.-S. (2018). Bacterial diversity change in oil-contaminated soils in Jianghan oilfield via a high-throughput sequencing technique. Biotechnology, 17(3), 128-134. Scopus. https://doi.org/10.3923/biotech.2018.128.134

Gielnik, A., Péchaud, Y., Huguenot, D., Cébron, A., Esposito, G., & Van Hullebusch, E. D. (2021). Functional potential of sewage sludge digestate microbes to degrade aliphatic hydrocarbons during bioremediation of a petroleum hydrocarbons contaminated soil. Journal of Environmental Management, 280. Scopus. https://doi.org/10.1016/j.jenvman.2020.111648

Grau, L., Blaudez, D., Le Cordier, H., Fornasier, F., & Cébron, A. (2023). Taxonomic and functional responses of soil and root bacterial communities associated with poplar exposed to a contamination gradient of phenanthrene. FEMS Microbiology Ecology, 99(6). Scopus. https://doi.org/10.1093/femsec/fiad052

Han, L., Chen, L., Feng, Y., KUZYAKOV, Y., Chen, Q., Zhang, S., Chao, L., Cai, Y., Ma, C., Sun, K., & Rillig, M. C. (2024). Microplastics alter soil structure and microbial community composition. Environment International, 185. Scopus. https://doi.org/10.1016/j.envint.2024.108508

Hu, M., Zhang, F., Li, G., Ruan, H., Li, X., Zhong, L., Chen, G., & Rui, Y. (2022). Falsochrobactrum tianjinense sp. Nov., a New Petroleum-Degrading Bacteria Isolated from Oily Soils. International Journal of Environmental Research and Public Health, 19(18). Scopus. https://doi.org/10.3390/ijerph191811833

Huang, Y., Zhou, Z., Cai, Y., Li, X., Huang, Y., Hou, J., & Liu, W. (2024). Response of petroleum-contaminated soil to chemical oxidation combined with biostimulation. Ecotoxicology and Environmental Safety, 282. Scopus. https://doi.org/10.1016/j.ecoenv.2024.116694

Jaafar, R. S. (2025). Microbial Solutions for Environmental Cleanup: Sphingomonas paucimobilis Role in Removing Heavy Metals and Aromatic Hydrocarbons. Jordan Journal of Biological Sciences, 18(2), 275-280. Scopus. https://doi.org/10.54319/jjbs/180208

Jayaramaiah, R. H., Egidi, E., Macdonald, C. A., Wang, J.-T., Jeffries, T. C., Mallavarapu, M., & Singh, B. K. (2022). Soil initial bacterial diversity and nutrient availability determine the rate of xenobiotic biodegradation. Microbial Biotechnology, 15(1), 318-336. Scopus. https://doi.org/10.1111/1751-7915.13946

Jemli, M., Karray, F., Mansour, L., Loukil, S., Bouhdida, R., Yadav, K. K., & Sayadi, S. (2025). Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant. Water Science and Technology, 91(2), 139-159. Scopus. https://doi.org/10.2166/wst.2024.364

Jia, R., Huang, X., Dang, P., Chen, Q., Zhong, S., Fan, F., Wang, C., Song, J., Chorover, J., & Rensing, C. (2024). Fe(III) reduction mediates vanadium release and reduction in vanadium contaminated paddy soil under different organic amendments. Environment International, 193. Scopus. https://doi.org/10.1016/j.envint.2024.109073

Jiang, X., Mao, Z., Zhong, L., Yu, J., & Tang, Y. (2022). Strategy to Promote the Biodegradation of Phenanthrene in Contaminated Soil by a Novel Bacterial Consortium in Slurry Bioreactors. International Journal of Environmental Research and Public Health, 19(9). Scopus. https://doi.org/10.3390/ijerph19095515

Jiménez-Volkerink, S. N., Vila, J., Jordán, M., Minguillón, C., Smidt, H., & Grifoll, M. (2023). Multi-Omic Profiling of a Newly Isolated Oxy-PAH Degrading Specialist from PAH-Contaminated Soil Reveals Bacterial Mechanisms to Mitigate the Risk Posed by Polar Transformation Products. Environmental Science and Technology, 57(1), 139-149. Scopus. https://doi.org/10.1021/acs.est.2c05485

Jurelevicius, D., Pereira, R. D. S., da Mota, F. F., Cury, J. C., de Oliveira, I. C., Rosado, A. S., Mason, O. U., Jansson, J. K., & Seldin, L. (2022). Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbon-contaminated soils in King George Island, Maritime Antarctica. Geobiology, 20(1), 98-111. Scopus. https://doi.org/10.1111/gbi.12472

Khan, S., & Jain, L. (2025). Production of Rhamnolipid using Moderate Halophilic Pseudomonas aeruginosa SH-6 isolated from a Saline Lake. Journal of Pure and Applied Microbiology, 19(2), 1049-1070. Scopus. https://doi.org/10.22207/JPAM.19.2.09

Khudur, L. S., Gleeson, D. B., Ryan, M. H., Shahsavari, E., Haleyur, N., Nugegoda, D., & Ball, A. S. (2018). Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environmental Pollution, 243, 94-102. Scopus. https://doi.org/10.1016/j.envpol.2018.08.040

Kidd, P. S., Álvarez, A., Álvarez-López, V., Cerdeira-Pérez, A., Rodríguez-Garrido, B., Prieto-Fernandez, Á., & Chalot, M. (2021). Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. Chemosphere, 277. Scopus. https://doi.org/10.1016/j.chemosphere.2021.130272

Kim, I., Shin, K., Kim, J., Ha, E., & Choi, B. (2023). Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth. Forests, 14(12). Scopus. https://doi.org/10.3390/f14122287

Korshunova, T., Kuzina, E., Mukhamatdyarova, S., Iskuzhina, M., Kulbaeva, L., & Petrova, S. (2024). Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. Plants, 13(24). Scopus. https://doi.org/10.3390/plants13243560

Kridi, N., Al-Shater, M. S., & Al Zoubi, M. M. (2021). Isolation and identification of some bacterial isolates from soil contaminated with crude oil and Testing Their Effectiveness. Baghdad Science Journal, 18(4), 1476-1484. Scopus. https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1476

Kuc, V., Vázquez, S., Hernández, E., Martínez Álvarez, L., Villalba Primitz, J., Mac Cormack, W. P., & Ruberto, L. (2019). Hydrocarbon-contaminated Antarctic soil: Changes in bacterial community structure during the progress of enrichment cultures with different n-alkanes as substrate. Polar Biology, 42(6), 1157-1166. Scopus. https://doi.org/10.1007/s00300-019-02508-1

Lee, G. L. Y., Ahmad, S. A., Yasid, N. A., Zulkharnain, A., Convey, P., Wan Johari, W. L., Alias, S. A., González-Rocha, G., & Shukor, M. Y. (2018). Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biology, 41(3), 553-562. Scopus. https://doi.org/10.1007/s00300-017-2216-y

Lee, J. G., Guo, Y., Belgodere, J. A., Al Harraq, A., Hymel, A. A., Pete, A. J., Valsaraj, K. T., Benton, M. G., Miller, M. G., Jung, J. P., & Bharti, B. (2021). Lignin-Zein Composite: Synthesis, Three-Dimensional Printing, and Microbial Degradation. ACS Sustainable Chemistry and Engineering, 9(4), 1781-1789. Scopus. https://doi.org/10.1021/acssuschemeng.0c07915

Lee, K. C., Archer, S. D. J., Kansour, M. K., & Al-Mailem, D. M. (2024). Bioremediation of oily hypersaline soil via autochthonous bioaugmentation with halophilic bacteria and archaea. Science of the Total Environment, 922. Scopus. https://doi.org/10.1016/j.scitotenv.2024.171279

Lee, S.-Y., Yun, S. H., Lee, H., Seo, G., & Kim, S. I. (2021). Multi-omics analysis of aniline-degrading bacterium, Delftia sp. K82. Journal of Analytical Science and Technology, 12(1). Scopus. https://doi.org/10.1186/s40543-021-00258-6

Lemmel, F., Maunoury-Danger, F., Leyval, C., & Cébron, A. (2019). DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils. FEMS Microbiology Ecology, 95(12). Scopus. https://doi.org/10.1093/femsec/fiz181

Li, B., Liu, H., Liu, X., Han, L., Yang, J., Kang, L., Tang, L., & Qian, T. (2024). Naphthalene Enhances Polycyclic Aromatic Hydrocarbon Biodegradation by Pseudomonas aeruginosa in Soil and Water: Effect and Mechanism. Water (Switzerland), 16(17). Scopus. https://doi.org/10.3390/w16172537

Li, J., Chen, Y., Qin, X., Cao, A., & Lu, A. (2022). Impact of Biochar on Rhizosphere Bacterial Diversity Restoration Following Chloropicrin Fumigation of Planted Soil. International Journal of Environmental Research and Public Health, 19(4). Scopus. https://doi.org/10.3390/ijerph19042126

Li, Y., Sanfilippo, J. E., Kearns, D., & Yang, J. Q. (2022). Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens. Microbiology Spectrum, 10(5). Scopus. https://doi.org/10.1128/spectrum.03233-22

Lin, M.-S., Huang, C.-Y., Lin, Y.-C., Lin, S.-L., Hsiao, Y.-H., Tu, P.-C., Cheng, P.-C., & Cheng, S.-F. (2022). Green Remediation Technology for Total Petroleum Hydrocarbon-Contaminated Soil. Agronomy, 12(11). Scopus. https://doi.org/10.3390/agronomy12112759

Liu, S. Y. P., Peng, X. M., Zhang, X. Y., & Yuen, B. B. H. (2021). Effects of lead on petrol degradation efficiency of bacteria isolated from soils in zhuhai, guangdong, china. Environment and Ecology Research, 9(4), 166-172. Scopus. https://doi.org/10.13189/eer.2021.090404

Lu, C., Hong, Y., Liu, J., Gao, Y., Ma, Z., Yang, B., Ling, W., & Waigi, M. G. (2019). A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environmental Pollution, 251, 773-782. Scopus. https://doi.org/10.1016/j.envpol.2019.05.044

Maki, A. A., & Al-Taee, A. M. R. (2025). Isolation and Identification of Pink-Pigmented Facultative Methylotrophic Bacteria (PPFM) from the North Rumaila Field, Iraq. Novel Research in Microbiology Journal, 9(1), 41-50. Scopus. https://doi.org/10.17582/journal.NRMJ/2025/9.1.41.50

Mamet, S. D., Jimmo, A., Conway, A., Teymurazyan, A., Talebitaher, A., Papandreou, Z., Chang, Y.-F., Shannon, W., Peak, D., & Siciliano, S. D. (2021). Soil Buffering Capacity Can Be Used to Optimize Biostimulation of Psychrotrophic Hydrocarbon Remediation. Environmental Science and Technology, 55(14), 9864-9875. Scopus. https://doi.org/10.1021/acs.est.1c01113

Martirosyan, V., Stavi, I., Doniger, T., Applebaum, I., Sherman, C., Levi, M., & Steinberger, Y. (2025). Bacterial Community Dynamics in Oil-Contaminated Soils in the Hyper-Arid Arava Valley. Agronomy, 15(5). Scopus. https://doi.org/10.3390/agronomy15051198

Mauricio-Gutiérrez, A., MacHorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Cruz, C., Sánchez-Alonso, M. P., & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus eff ectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, 46(4), 59-69. Scopus. https://doi.org/10.24425/aep.2020.135765

Medina, R., David Gara, P. M., Fernández-González, A. J., Rosso, J. A., & del Panno, M. T. (2018). Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation. Science of the Total Environment, 618, 518-530. Scopus. https://doi.org/10.1016/j.scitotenv.2017.10.326

Minnikova, T., Kolesnikov, S., Minkina, T., & Mandzhieva, S. (2021). Assessment of ecological condition of haplic chernozem calcic contaminated with petroleum hydrocarbons during application of bioremediation agents of various natures. Land, 10(2), 1-20. Scopus. https://doi.org/10.3390/land10020169

Minnikova, T., Kolesnikov, S., Ruseva, A., Kazeev, K., Minkina, T., Mandzhieva, S., & Sushkova, S. (2022). Influence of the biochar on petroleum hydrocarbon degradation intensity and ecological condition of Haplic Chernozem. Eurasian Journal of Soil Science, 11(2), 157-166. Scopus. https://doi.org/10.18393/ejss.1037798

Mori, J. F., & Kanaly, R. A. (2020). Multispecies Diesel Fuel Biodegradation and Niche Formation Are Ignited by Pioneer Hydrocarbon-Utilizing Proteobacteria in a Soil Bacterial Consortium. Applied and Environmental Microbiology, 87(1), 1-19. Scopus. https://doi.org/10.1128/AEM.02268-20

Mori, J. F., Nagai, M., & Kanaly, R. A. (2021). Complete genome sequence of cupriavidus necator kk10, an azaarene-degrading and polyhydroxyalkanoate-producing soil bacterium. Microbiology Resource Announcements, 10(28). Scopus. https://doi.org/10.1128/MRA.00423-21

Nafal, D. H., & Abdulhay, H. S. (2020). Bioremediation of petroleum polluted soils using consortium bacteria. Iraqi Journal of Science, 61(5), 961-969. Scopus. https://doi.org/10.24996/ijs.2020.61.5.3

Naloka, K., Petchsom, T., Muangchinda, C., & Pinyakong, O. (2025). A low-cost, ready-to-use Mycolicibacterium-Bacillus bioaugmentation strategy: Impacts on soil microbial community and enhanced diesel oil removal. Applied Soil Ecology, 213. Scopus. https://doi.org/10.1016/j.apsoil.2025.106298

Nanekar, R. D., & Kokitkar, S. S. (2024). Isolation, Characterization and Optimization of Indigenous Petrol Degrading Bacteria from Oil Contaminated Soil. Journal of Pure and Applied Microbiology, 18(3), 2014-2023. Scopus. https://doi.org/10.22207/JPAM.18.3.52

Navas-Cáceres, O. D., Parada, M., & Zafra, G. (2023). Development of a highly tolerant bacterial consortium for asphaltene biodegradation in soils. Environmental Science and Pollution Research, 30(59), 123439-123451. Scopus. https://doi.org/10.1007/s11356-023-30682-7

Odion, E. E., Ma, J., Bräu, L., Lim, J. W., & Lin, C. (2025). Interactive effects of heavy metals and soil conditioners on rhizodegradation of long-chain petroleum hydrocarbons in soils. Environmental Pollution, 384. Scopus. https://doi.org/10.1016/j.envpol.2025.126995

Osinowo, I., Abioye, O. P., Oyeleke, S. B., & Oyewole, O. A. (2020). Bioremediation of diesel contaminated soil using bacterial cocktail and organic nutrients. Journal of Microbiology, Biotechnology and Food Sciences, 10(2), 150-158. Scopus. https://doi.org/10.15414/jmbfs.2020.10.2.150-158

Panwar, R., & Mathur, J. (2023). Microbial-assisted phytodegradation for the amelioration of pyrene-contaminated soil using Pseudomonas aeruginosa and Aspergillus oryzae with alfalfa and sunflower. 3 Biotech, 13(7). Scopus. https://doi.org/10.1007/s13205-023-03664-2

Posada-Baquero, R., Jiménez-Volkerink, S. N., García, J. L., Vila, J., Cantos, M., Grifoll, M., & Ortega- Calvo, J. J. (2020). Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil. Science of the Total Environment, 720. Scopus. https://doi.org/10.1016/j.scitotenv.2020.137608

Roszak, M., Honselmann genannt Humme, J., Stachurska, X., Dubrowska, K., Kajdanowicz, J., Gołębiewska, M., Kiepas-Kokot, A., Osińska, B., Augustyniak, A., & Karakulska, J. (2021). Development of an autochthonous microbial consortium for enhanced bioremediation of pah-contaminated soil. International Journal of Molecular Sciences, 22(24). Scopus. https://doi.org/10.3390/ijms222413469

Sato, K., Take, S., Ahmad, S. A., Gomez-Fuentes, C., & Zulkharnain, A. (2023). Carbazole Degradation and Genetic Analyses of Sphingobium sp. Strain BS19 Isolated from Antarctic Soil. Sustainability (Switzerland), 15(9). Scopus. https://doi.org/10.3390/su15097197

Sattar, S., Siddiqui, S., Shahzad, A., Bano, A., Naeem, M., Hussain, R., Khan, N., Jan, B. L., & Yasmin, H. (2022). Comparative Analysis of Microbial Consortiums and Nanoparticles for Rehabilitating Petroleum Waste Contaminated Soils. Molecules, 27(6). Scopus. https://doi.org/10.3390/molecules27061945

Shen, Y., Ji, Y., Li, C., Luo, P., Wang, W., Zhang, Y., & Nover, D. (2018). Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. International Journal of Environmental Research and Public Health, 15(10). Scopus. https://doi.org/10.3390/ijerph15102168

ShirzadianGilan, R., Parvizi, Y., Pazira, E., & Rejali, F. (2023). Remediation capacity of drought-tolerant plants and bacteria in petroleum hydrocarbon-contaminated soil in Iran. South African Journal of Botany, 153, 1-10. Scopus. https://doi.org/10.1016/j.sajb.2022.12.014

Steliga, T., Wojtowicz, K., Kapusta, P., & Brzeszcz, J. (2020). Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules, 25(3). Scopus. https://doi.org/10.3390/molecules25030709

Subramaniam, K., Shaharuddin, N. A., Tengku-Mazuki, T. A., Zulkharnain, A., Khalil, K. A., Convey, P., & Ahmad, S. A. (2020). Statistical optimisation for enhancement of phenol biodegradation by the Antarctic soil bacterium Arthrobacter sp. Strain AQ5-15 using response surface methodology py. Journal of Environmental Biology, 41(6), 1560-1569. Scopus. https://doi.org/10.22438/JEB/41/6/MRN-1496

Sydow, M., Owsianiak, M., Framski, G., Woźniak-Karczewska, M., Piotrowska-Cyplik, A., Ławniczak, Ł., Szulc, A., Zgoła-Grześkowiak, A., Heipieper, H. J., & Chrzanowski, Ł. (2018). Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Ecotoxicology and Environmental Safety, 147, 157-164. Scopus. https://doi.org/10.1016/j.ecoenv.2017.08.026

Taher, A. M., & Saeed, I. O. (2022). Bioremediation of Contaminated Soil with Crude Oil Using New Genus and Species of Bacteria. Journal of King Abdulaziz University, Marine Science, 32(2), 13-35. Scopus. https://doi.org/10.4197/Mar.32-2.2

Thomas, F., Corre, E., & Cébron, A. (2019). Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME Journal, 13(7), 1814-1830. Scopus. https://doi.org/10.1038/s41396-019-0394-z

Vauloup, A., & Cébron, A. (2025). Development of a device to trap soil bacteria capable of degrading organic contaminants such as alkanes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 491. Scopus. https://doi.org/10.1016/j.jhazmat.2025.137690

Wang, J., Su, X., Zhang, C., Han, Z., & Wang, M. (2025). Biodegradation of Benzo(a)pyrene in Contaminated Soil: Plant and Microorganism Contributions from Isotope Tracing. Toxics, 13(5). Scopus. https://doi.org/10.3390/toxics13050405

Wang, P., Liu, T., Liu, J., Duan, Y., Han, S., Zhang, Z., Li, L., & Lin, Y. (2022). Effects of different colored polyethylene mulching films on bacterial communities from soil during enrichment incubation. Ecotoxicology and Environmental Safety, 246. Scopus. https://doi.org/10.1016/j.ecoenv.2022.114160

Wang, W., Gao, Y., Du, J., Zheng, L., Kong, X., Wang, H., Yang, X., Duan, L., Zhao, Q., Liu, Y., & Naidu, R. (2023). Dose–effect of nitrogen regulation on the bioremediation of diesel contaminated soil. Environmental Technology and Innovation, 32. Scopus. https://doi.org/10.1016/j.eti.2023.103245

Xia, M., Chakraborty, R., Terry, N., Singh, R. P., & Fu, D. (2020). Promotion of saltgrass growth in a saline petroleum hydrocarbons contaminated soil using a plant growth promoting bacterial consortium. International Biodeterioration and Biodegradation, 146. Scopus. https://doi.org/10.1016/j.ibiod.2019.104808

Yessentayeva, K., Reinhard, A., Berzhanova, R., Mukasheva, T., Urich, T., & Mikolasch, A. (2024). Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Applied Microbiology and Biotechnology, 108(1). Scopus. https://doi.org/10.1007/s00253-024-13010-y

Yu, Y., Zhang, Y., Zhao, N., Guo, J., Xu, W., Ma, M., & Li, X. (2020). Remediation of crude oil-polluted soil by the bacterial rhizosphere community of suaeda salsa revealed by 16S rRNA genes. International Journal of Environmental Research and Public Health, 17(5). Scopus. https://doi.org/10.3390/ijerph17051471

Yuan, S., Friman, V.-P., Balcázar, J. L., Zheng, X., Ye, M., Sun, M., & Hu, F. (2023). Viral and Bacterial Communities Collaborate through Complementary Assembly Processes in Soil to Survive Organochlorine Contamination. Applied and Environmental Microbiology, 89(3). Scopus. https://doi.org/10.1128/aem.01810-22

Zhang, Y., Qian, F., & Bao, Y. (2025). Variations of microbiota and metabolites in rhizosphere soil of Carmona microphylla at the co-contaminated site with polycyclic aromatic hydrocarbons and heavy metals. Ecotoxicology and Environmental Safety, 290. Scopus. https://doi.org/10.1016/j.ecoenv.2025.117734

Zhu, H., Ren, L., Yang, H., & Zhang, J. (2025). Leveraging indigenous Bacillus consortia for heavy oil biodegradation and soil bioremediation. Environmental Technology and Innovation, 40. Scopus. https://doi.org/10.1016/j.eti.2025.104415

Published

2026-01-20

How to Cite

Chavez-Cayo, E. O. (2026). Global bibliometric analysis of hydrocarbon-degrading bacteria in soils between 2018 and 2025: taxonomic trends, bioremediation efficiency, and ecological dynamics. Revista Amazónica De Ciencias Ambientales Y Ecológicas, 5(1), e1342. https://doi.org/10.51252/reacae.v5i1.1342

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.