Genomic identification of lactic acid bacteria isolated from the faeces of the sajino (Pecari tajacu)
DOI:
https://doi.org/10.51252/revza.v2i1.297Keywords:
bioinformatics, microbiota, Pecari tajacu, probioticsAbstract
The sajino (Pecari tajacu) is a species of high commercial value in the international market for its meat and leather. Animals raised in captivity are characterized by their rusticity, probably due to their native microbiota, which is of great interest as a source of probiotics for their management in a farm. The objective was to molecularly identify the microbiota of the sajino feces. Being the methodology, isolation and bacterial purification in selective culture medium MRS, followed by the extraction of DNA directed to the 16S rDNA gene, PCR, electrophoresis, sequencing and finally the bioinformatic analysis. Resulting, lactic acid bacterial strains, Weissella confusa, Weissella cibaria, Pediococcus pentosaceus and Lactobacillus plantarum. This study opens the way to the “domestication” of probiotics of candidate wild animal species for the development of new livestock activities, particularly in buffer zones of biosphere reserves.
Downloads
References
Adeniyi, B. A., Adetoye, A., & Ayeni, F. A. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. African health sciences. 2015; 15 (3), 888-895. http://dx.doi.org/10.4314/ahs.v15i3.24
Navarro, D., Rengifo, M. E., Ch, T. J. A., & Layche, J. Fomento de la crianza y conservación del sajino (Pecari tajacu, linneus 1758) en la comunidad de Nina Rumi, río Nanay (Loreto Perú), 2002.
Ducatelle, R., Eeckhaut, V., Haesebrouck, F., & Van Immerseel, F. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal. 2015; 9(1), 43-48. http://dx.doi.org/10.1017/S1751731114002584
Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology.2017. http://dx.doi.org/10.1016/j.tim.2017.05.004
Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., & Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients. 2017; 9 (5), 521. http://dx.doi.org/10.3390/nu9050521
Greenblum, S., Turnbaugh, P. J., & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences. 2012; 109(2), 594-599. https://doi.org/10.1073/pnas.1116053109
Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W., & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice. 2012; 27 (2), 201-214. http://dx.doi.org/10.1177/0884533611436116
Kabat, A. M., Srinivasan, N., & Maloy, K. J. Modulation of immune development and function by intestinal microbiota. Trends in immunology. 2014; 35 (11), 507-517. http://dx.doi.org/10.1016/j.it.2014.07.010
Green, G. L., Brostoff, J., Hudspith, B., Michael, M., Mylonaki, M., Rayment, N., & Bruce, K. D. Molecular characterization of the bacteria adherent to human colorectal mucosa. Journal of applied microbiology. 2006; 100 (3), 460-469. http://dx.doi.org/10.1111/j.1365-2672.2005.02783.x
Bird, A., Conlon, M., Christophersen, C., & Topping, D. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial microbes. 2010; 1 (4), 423-431. http://dx.doi.org/10.3920/BM2010.0041
Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717), 1915-1920. http://dx.doi.org/10.1126/science.1104816
Krause, D. O., Bhandari, S. K., House, J. D., & Nyachoti, C. M. Response of nursery pigs to a synbiotic preparation of starch and an anti-Escherichia coli K88 probiotic. Applied and environmental microbiology. 2010; 76 (24), 8192-8200. http://dx.doi.org/10.1128/AEM.01427-10
Larsson, J., Aspán, A., Lindberg, R., Grandon, R., Båverud, V., Fall, N., & Jacobson, M. Pathological and bacteriological characterization of neonatal porcine diarrhoea of uncertain aetiology. Journal of medical microbiology. 2015; 64 (8), 916-926. http://dx.doi.org/10.1099/jmm.0.000108
Ward, D. V., Scholz, M., Zolfo, M., Taft, D. H., Schibler, K. R., Tett, A., & Morrow, A. L. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell reports. 2016; 14 (12), 2912-2924. http://dx.doi.org/10.1016/j.celrep.2016.03.015
Kabir, S. M. The role of probiotics in the poultry industry. International Journal of Molecular Sciences. 2009; 10 (8), 3531-3546. http://dx.doi.org/10.3390/ijms10083531
Argudín, M. A., Deplano, A., Meghraoui, A., Dodémont, M., Heinrichs, A., Denis, O., & Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics. 2017; 6 (2), 12. http://dx.doi.org/10.3390/antibiotics6020012
Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., & Hashsham, S. A. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences. 2012; 109 (5), 1691-1696. http://dx.doi.org/10.1073/pnas.1120238109
Cromwell, G. L. Why and how antibiotics are used in swine production. Animal biotechnology. 2002; 13(1), 7-27. http://dx.doi.org/10.1081/ABIO-120005767
Kim, H. B., Borewicz, K., White, B. A., Singer, R. S., Sreevatsan, S., Tu, Z. J., & Isaacson, R. E. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proceedings of the National Academy of Sciences. 2012; 109 (38), 15485-15490. http://dx.doi.org/10.1073/pnas.1205147109
Burrough, E. R., Arruda, B. L., Patience, J. F., & Plummer, P. J. Alterations in the colonic microbiota of pigs associated with feeding distillers dried grains with solubles. PloS one. 2015; 10 (11), e0141337. http://dx.doi.org/10.1371/journal.pone.0141337
Holman, D. B., & Chénier, M. R. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian journal of microbiology. 2015; 61 (11), 785-798. https://doi.org/10.1139/cjm-2015-0239
Sandrin, T. R., & Demirev, P. A. Characterization of microbial mixtures by mass spectrometry. Mass Spectrometry Reviews; 2017. http://dx.doi.org/10.1002/mas.21534
Kambouris, M. E., Pavlidis, C., Skoufas, E., Arabatzis, M., Kantzanou, M., Velegraki, A., & Patrinos, G. P. Culturomics: A New Kid on the Block of OMICS to Enable Personalized Medicine. OMICS: A Journal of Integrative Biology; 2017. http://dx.doi.org/10.1089/omi.2017.0017
Villena, J., Saavedra, L., Hebert, E. M., Suda, Y., Masumizu, Y., Albarracin, L., & Kitazawa, H. Draft Genome Sequence of Lactobacillus plantarum MPL16, a Wakame-Utilizing Immunobiotic Strain Isolated from Swine Feces. Genome announcements. 2017; 5 (10), e00006-17. https://ri.conicet.gov.ar/handle/11336/64168
Campbell, T. L., Daigle, D. M., & Brown, E. D. Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochemical Journal. 2005; 389 (3), 843-852. https://doi.org/10.1042/BJ20041873
De Boever, P.; Wouters, R.; Verschaeve, L.; Berckmans, P.; Schoeters, G.; Verstraete, W. Pathogens. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl. Microbiol. Biotechnol. 2010; 53:709–714. http://dx.doi.org/10.1007/s002530000330
Lee, K. W., Park, J. Y., Jeong, H. R., Heo, H. J., Han, N. S., & Kim, J. H. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe. 2012; 18 (1), 96-102. http://dx.doi.org/10.1016/j.anaerobe.2011.12.015
Shewmaker, P.L., Camus, A.C., Bailiff, T., Steigerwalt, A.G., Morey, R.E., Carvalho, M.G. Streptococcus ictaluri sp. nov., isolated from channel catfish Ictalurus punctatus broodstock. Int. J. Syst. Evol. Microbiol. 2007; 57, 1603–1606. http://dx.doi.org/10.1099/ijs.0.64810-0
Counihan, K. L., Gill, V. A., Miller, M. A., Burek-Huntington, K. A., LeFebvre, R. B., & Byrne, B. A. Pathogenesis of Streptococcus infantarius subspecies coli Isolated from Sea Otters with Infective Endocarditis. Comparative immunology, microbiology and infectious diseases. 2015; 40, 7-17. https://doi.org/10.1016/j.cimid.2015.03.002
Clarke, L. L., Fathke, R. L., Sanchez, S., & Stanton, J. B. Streptococcus bovis/S. equinus complex septicemia in a group of calves following intramuscular vaccination. Journal of Veterinary Diagnostic Investigation. 2016; 28(4), 423-428. https://doi.org/10.1177/1040638716648364
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27 (16), 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
Endo, A., Futagawa‐Endo, Y., Kawasaki, S., Dicks, L. M. T., Niimura, Y., & Okada, S. Sodium acetate enhances hydrogen peroxide production in Weissella cibaria. Letters in applied microbiology. 2009; 49(1), 136-141. https://doi.org/10.1111/j.1472-765X.2009.02633.x
Mochizuki, D., Tanaka, N., Ishikawa, M., Endo, A., Shiwa, Y., Fujita, N., & Niimura, Y. Evolution and diversification of oxygen metabolism of aerotolerant anaerobes in the order Bacillales and other bacterial taxonomic groups. The Bulletin of BISMiS. 2012; 3 (Part 1), 1-17. https://www.bismis.net/files/BulletinofBISMIS_3-1.pdf
Vidal, K., Labéta, M. O., Schiffrin, E. J., & Donnet-Hughes, A. Soluble CD14 in human breast milk and its role in innate immune responses. Acta Odontologica Scandinavica. 2001; 59 (5), 330-334. https://doi.org/10.1080/000163501750541219
Dziarski, R., Ulmer, A. J., & Gupta, D. Interactions of CD14 with components of grampositive bacteria. In CD14 in the Inflammatory Response. 2000; (74), 83-107. http://dx.doi.org/10.1159/000058761
Heinemann, C., van Hylckama Vlieg, J. E., Janssen, D. B., Busscher, H. J., van der Mei, H. C., & Reid, G. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters. 2000; 190(1), 177-180. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09282.x
Bejar, W., Gabriel, V., Amari, M., Morel, S., Mezghani, M., Maguin, E., & Chouayekh, H. Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. International journal of biological macromolecules. 2013; 52, 125-132. https://doi.org/10.1016/j.ijbiomac.2012.09.014
Himeno, H., Hanawa-Suetsugu, K., Kimura, T., Takagi, K., Sugiyama, W., Shirata, S., & Goto, S. A novel GTPase activated by the small subunit of ribosome. Nucleic acids research. 2004; 32 (17), 5303-5309. https://doi.org/10.1093/nar/gkh861
Kolter, R., & Moreno, F. Genetics of ribosomally synthesized peptide antibiotics. Annual Reviews in Microbiology. 1992; 46 (1), 141-161. https://doi.org/10.1146/annurev.mi.46.100192.001041
Nes, I. F., Diep, D. B., Håvarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 1996; 70(2),113-128. http://dx.doi.org/10.1007/BF00395929
Oppegård, C., Schmidt, J., Kristiansen, P. E., & Nissen-Meyer, J. Mutational analysis of putative helix− helix interacting motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry. 2008; 47 (18), 5242-5249. https://doi.org/10.1021/bi800289w
Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H. S., & Kristiansen, P. E. Structurefunction relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current pharmaceutical biotechnology. 2009; 10 (1), 19-37. http://dx.doi.org/10.2174/138920109787048661
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lourdes Vásquez-Rojas, Fredy Fabian-Dominguez, Miluska Baylon-Cuba, Hugo Sanchez-Cardenas, Eric Mialhe
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista de Veterinaria y Zootecnia Amazónica (REVZA) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the REVZA.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).