Identificación molecular de la microbiota gastrointestinal del lechón lactante

Autores/as

  • Fredy Fabian-Dominguez Universidad Nacional de Tumbes; Incabiotec; Universidad Nacional de San Martin - Tarapoto https://orcid.org/0000-0003-3577-5896
  • Lourdes Vásquez-Rojas Universidad Nacional de Tumbes; Incabiotec
  • Miluska Baylon-Cuba Universidad Nacional de Tumbes; Incabiotec
  • Alicia López-Flores Universidad Nacional de San Martin - Tarapoto
  • Eric Mailhe Incabiotec https://orcid.org/0000-0001-6129-1751

DOI:

https://doi.org/10.51252/revza.v1i1.136

Palabras clave:

farmacología, microorganismos, probióticos, porcinos

Resumen

La resistencia de microorganismos patógenos a los antibióticos y la posibilidad de residuos de antibióticos en los productos de origen animal provocan una atención creciente, siendo necesario el uso de alternativas potenciales como bacterias benéficas con carácter probiótico para reemplazar los antibióticos en la dieta de los animales. La metodología fue el aislamiento de bacterias ácido lácticas del tracto gastro intestinal de un lechón lactante, seguidamente se realizó la purificación bacteriana en medio de cultivo MRS, extracción de ADN, y en base de las secuencias del 16S ADNr fue amplificado por PCR con iniciadores universales. En el análisis bioinformático por el algoritmo de BLAST del National Center for Biotechnology Information se identificaron molecularmente, Lactobacillus farcimenis, Weissella sp, en el estómago; Lactobacillus brevis, Pediococcus pentosaceus, en el intestino delgado y en el intestino grueso, Pedio-coccus pentosaceus y Lactobacillus plantarum. En conclusión, existe una diversidad de Lactobacillus en el tracto gastrointestal del porcino, siendo un gran potencial como alternativa a los antibióticos en la alimentación y la inmunomodulación del sistema inmune del animal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Schulze M, Nitsche-Melkus E, Hensel B, Jung M, Jakop U. Antibiotics and their alternatives in Artificial Breeding in livestock. Anim Reprod Sci. septiembre de 2020;220:106284. doi:https://doi.org/10.1016/j.anireprosci.2020.106284

Knecht D, Cholewińska P, Jankowska-Mąkosa A, Czyż K. Development of Swine’s Digestive Tract Microbiota and Its Relation to Production Indices—A Review. Animals. 21 de marzo de 2020;10(3):527. doi:https://doi.org/10.3390/ani10030527

Rasschaert G, Van Elst D, Colson L, Herman L, de Carvalho Ferreira HC, Dewulf J, et al. Antibiotic residues and antibiotic-resistant bacteria in pig slurry used to fertilize agricultural fields. Antibiotics. 17 de enero de 2020;9(1):34. doi:https://doi.org/10.3390/antibiotics9010034

Yang F, Hou C, Zeng X, Qiao S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens. 27 de enero de 2015;4(1):34-45. doi:https://doi.org/10.3390/pathogens4010034

Kayama H, Takeda K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota‐derived metabolites. Eur J Immunol. 28 de julio de 2020;50(7):921-31. doi:https://doi.org/10.1002/eji.201948478

Zheng L, Hu Y, He X, Zhao Y, Xu H. Isolation of swine‐derived Lactobacillus plantarum and its synergistic antimicrobial and health‐promoting properties with ZnO nanoparticles. J Appl Microbiol. 20 de junio de 2020;128(6):1764-75. doi:https://doi.org/10.1111/jam.14605

Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, et al. Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol Biotechnol Equip. 2 de enero de 2015;29(1):84-91. doi:https://doi.org/10.1080/13102818.2014.987450

Pearlin BV, Muthuvel S, Govidasamy P, Villavan M, Alagawany M, Ragab Farag M, et al. Role of acidifiers in livestock nutrition and health: A review. J Anim Physiol Anim Nutr (Berl). 8 de marzo de 2020;104(2):558-69. doi:https://doi.org/10.1111/jpn.13282

Lindsay KL, Brennan L, Kennelly MA, Maguire OC, Smith T, Curran S, et al. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: a randomized controlled trial. Am J Obstet Gynecol. abril de 2015;212(4):1-11. doi:https://doi.org/10.1016/j.ajog.2015.02.008

Ma Z, Cheng Y, Wang S, Ge J, Shi H, Kou J. Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics. J Anim Physiol Anim Nutr (Berl). 7 de enero de 2020;104(1):44-55. doi:https://doi.org/10.1111/jpn.13226

Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, Hernandez-Boussard T, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg. 18 de julio de 2009;13(7):1198-204. doi:https://doi.org/10.1007/s11605-009-0891-x

Stecker RA, Moon JM, Russo TJ, Ratliff KM, Mumford PW, Jäger R, et al. Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab (Lond). 23 de diciembre de 2020;17(1):93. doi:https://doi.org/10.1186/s12986-020-00515-2

Rahmdel S, Shekarforoush SS, Hosseinzadeh S, Torriani S, Gatto V. Antimicrobial spectrum activity of bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk. J Dairy Sci. abril de 2019;102(4):2928-40. doi:https://doi.org/10.3168/jds.2018-15414

Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 15 de mayo de 2015;60:129-34. doi:https://doi.org/10.1093/cid/civ085

Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 1 de febrero de 2007;85(2):488-96. doi:https://doi.org/10.1093/ajcn/85.2.488

Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. febrero de 2016;43(1):97-106. doi:https://doi.org/10.1053/j.seminoncol.2015.09.001

Asha MZ, Khalil SFH. Efficacy and safety of probiotics, prebiotics and synbiotics in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Sultan Qaboos Univ Med J. 9 de marzo de 2020;20(1):13. doi:https://doi.org/10.18295/squmj.2020.20.01.003

Mohanty D, Panda S, Kumar S, Ray P. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microb Pathog. enero de 2019;126:212-7. doi:https://doi.org/10.1016/j.micpath.2018.11.014

Jeżewska-Frąckowiak J, Seroczyńska K, Banaszczyk J, Woźniak D, Żylicz-Stachula A, Skowron PM. The promises and risks of probiotic Bacillus species. Acta Biochim Pol. 6 de diciembre de 2018;65(4):509-19. doi:https://doi.org/10.18388/abp.2018_2652

Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum : a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr. 12 de noviembre de 2020;60(20):3387-99. doi:https://doi.org/10.1080/10408398.2019.1688250

He Y, Kim K, Kovanda L, Jinno C, Song M, Chase J, et al. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox. J Anim Sci. 1 de septiembre de 2020;98(9):290. doi:https://doi.org/10.1093/jas/skaa290

Naito S, Hayashidani H, Kaneko K, Ogawa M, Benno Y. Development of intestinal lactobacilli in normal piglets. J Appl Bacteriol. agosto de 1995;79(2):230-6. doi:https://doi.org/10.1111/j.1365-2672.1995.tb00940.x

Yang J, Qian K, Wang C, Wu Y. Roles of probiotic lactobacilli inclusion in helping piglets stablish healthy intestinal inter-environment for pathogen defense. Probiotics Antimicrob Proteins. 30 de junio de 2018;10(2):243-50. doi:https://doi.org/10.1007/s12602-017-9273-y

Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M, Aminov RI, et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 2009;7(1):79. doi:https://doi.org/10.1186/1741-7007-7-79

Valeriano VDV, Balolong MP, Kang D-K. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol. marzo de 2017;122(3):554-67. doi:https://doi.org/10.1111/jam.13364

Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, et al. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. julio de 2006;8(7):1191-9. doi:https://doi.org/10.1111/j.1462-2920.2006.01009.x

Xu C, Yan S, Guo Y, Qiao L, Ma L, Dou X, et al. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci. marzo de 2020;244:117281. doi:https://doi.org/10.1016/j.lfs.2020.117281

García V, Gambino M, Pedersen K, Haugegaard S, Olsen JE, Herrero-Fresno A. F4- and F18-positive enterotoxigenic escherichia coli isolates from diarrhea of postweaning pigs: genomic characterization. Ercolini D, editor. Appl Environ Microbiol. 10 de noviembre de 2020;86(23). doi:https://doi.org/10.1128/AEM.01913-20

McLoughlin S, Spillane C, Claffey N, Smith PE, O’Rourke T, Diskin MG, et al. Rumen microbiome composition is altered in sheep divergent in feed efficiency. Front Microbiol. 25 de agosto de 2020;11(1981):1-16. doi:https://doi.org/10.3389/fmicb.2020.01981

Lähteinen T, Lindholm A, Rinttilä T, Junnikkala S, Kant R, Pietilä TE, et al. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Vet Immunol Immunopathol. marzo de 2014;158(1-2):14-25. doi:https://doi.org/10.1016/j.vetimm.2013.09.002

Zhang L, Liu S, Li M, Piao X. Effects of maternal 25-hydroxycholecalciferol during the last week of gestation and lactation on serum parameters, intestinal morphology and microbiota in suckling piglets. Arch Anim Nutr. 1 de noviembre de 2020;74(6):445-61. doi:https://doi.org/10.1080/1745039X.2020.1822710

Alqazlan N, Astill J, Taha-Abdelaziz K, Nagy É, Bridle B, Sharif S. Probiotic lactobacilli enhance immunogenicity of an inactivated H9N2 influenza virus vaccine in chickens. Viral Immunol. 1 de marzo de 2021;34(2):86-95. doi:https://doi.org/10.1089/vim.2020.0209

Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. noviembre de 2011;27(6):496-501. doi:https://doi.org/10.1097/MOG.0b013e32834baa4d

Alasmary F, Snelling A, Zain M, Alafeefy A, Awaad A, Karodia N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules. 20 de agosto de 2015;20(8):15206-23. doi:https://doi.org/10.3390/molecules200815206

Sugiharto S, Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim Nutr. marzo de 2019;5(1):1-10. doi:https://doi.org/10.1016/j.aninu.2018.11.001

Wilkins T, Sequoia J. Probiotics for gastrointestinal conditions: a summary of the evidence. Am Fam Physician [Internet]. 2017;96(3):170-9. Disponible en: https://www.aafp.org/afp/2017/0801/p170.html

Publicado

2022-01-20

Cómo citar

Fabian-Dominguez, F., Vásquez-Rojas, L., Baylon-Cuba, M., López-Flores, A., & Mialhe, M. (2022). Identificación molecular de la microbiota gastrointestinal del lechón lactante. Revista De Veterinaria Y Zootecnia Amazónica, 1(1), 22–30. https://doi.org/10.51252/revza.v1i1.136

Artículos similares

También puede {advancedSearchLink} para este artículo.