Identificación genómica de bacterias ácido lácticas aisladas de las heces del sajino (Pecari tajacu)

Autores/as

  • Lourdes Vásquez-Rojas Universidad Nacional de Tumbes
  • Fredy Fabian-Dominguez Universidad Nacional de San Martín
  • Miluska Baylon-Cuba Universidad Nacional de Tumbes
  • Hugo Sanchez-Cardenas Universidad Nacional de San Martín
  • Eric Mialhe INCABIOTEC

DOI:

https://doi.org/10.51252/revza.v2i1.297

Palabras clave:

bioinformática, microbiota, Pecari tajacu, probióticos

Resumen

El sajino (Pecari tajacu) es una especie de alto valor comercial en el mercado internacional por su carne y cuero. Los animales criados en cautividad se caracterizan por su rusticidad probablemente debido a su microbiota nativa que resulta de gran interés como fuente de probióticos para su manejo en zoocriadero. El objetivo fue identificar molecularmente, la microbiota de las heces del sajino. Siendo la metodología, aislamiento y purificación bacteriana en medio de cultivo selectivo MRS, seguidamente la extracción de ADN dirigida al gen 16S ADNr, PCR, electroforesis, secuenciación y finalmente el análisis bioinformático. Resultando, cepas bacterianas ácido lácticas, Weissella confusa, Weissella cibaria, Pediococcus pentosaceus y Lactobacillus plantarum. Este estudio abre la vía a la “domesticación” de probióticos de especies animales silvestres candidatas para el desarrollo de nuevas actividades pecuarias, en particular en zonas de amortiguamiento de reservas de biosfera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adeniyi, B. A., Adetoye, A., & Ayeni, F. A. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. African health sciences. 2015; 15 (3), 888-895. http://dx.doi.org/10.4314/ahs.v15i3.24

Navarro, D., Rengifo, M. E., Ch, T. J. A., & Layche, J. Fomento de la crianza y conservación del sajino (Pecari tajacu, linneus 1758) en la comunidad de Nina Rumi, río Nanay (Loreto Perú), 2002.

Ducatelle, R., Eeckhaut, V., Haesebrouck, F., & Van Immerseel, F. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal. 2015; 9(1), 43-48. http://dx.doi.org/10.1017/S1751731114002584

Gresse, R., Chaucheyras-Durand, F., Fleury, M. A., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology.2017. http://dx.doi.org/10.1016/j.tim.2017.05.004

Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., & Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients. 2017; 9 (5), 521. http://dx.doi.org/10.3390/nu9050521

Greenblum, S., Turnbaugh, P. J., & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences. 2012; 109(2), 594-599. https://doi.org/10.1073/pnas.1116053109

Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W., & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice. 2012; 27 (2), 201-214. http://dx.doi.org/10.1177/0884533611436116

Kabat, A. M., Srinivasan, N., & Maloy, K. J. Modulation of immune development and function by intestinal microbiota. Trends in immunology. 2014; 35 (11), 507-517. http://dx.doi.org/10.1016/j.it.2014.07.010

Green, G. L., Brostoff, J., Hudspith, B., Michael, M., Mylonaki, M., Rayment, N., & Bruce, K. D. Molecular characterization of the bacteria adherent to human colorectal mucosa. Journal of applied microbiology. 2006; 100 (3), 460-469. http://dx.doi.org/10.1111/j.1365-2672.2005.02783.x

Bird, A., Conlon, M., Christophersen, C., & Topping, D. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial microbes. 2010; 1 (4), 423-431. http://dx.doi.org/10.3920/BM2010.0041

Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717), 1915-1920. http://dx.doi.org/10.1126/science.1104816

Krause, D. O., Bhandari, S. K., House, J. D., & Nyachoti, C. M. Response of nursery pigs to a synbiotic preparation of starch and an anti-Escherichia coli K88 probiotic. Applied and environmental microbiology. 2010; 76 (24), 8192-8200. http://dx.doi.org/10.1128/AEM.01427-10

Larsson, J., Aspán, A., Lindberg, R., Grandon, R., Båverud, V., Fall, N., & Jacobson, M. Pathological and bacteriological characterization of neonatal porcine diarrhoea of uncertain aetiology. Journal of medical microbiology. 2015; 64 (8), 916-926. http://dx.doi.org/10.1099/jmm.0.000108

Ward, D. V., Scholz, M., Zolfo, M., Taft, D. H., Schibler, K. R., Tett, A., & Morrow, A. L. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell reports. 2016; 14 (12), 2912-2924. http://dx.doi.org/10.1016/j.celrep.2016.03.015

Kabir, S. M. The role of probiotics in the poultry industry. International Journal of Molecular Sciences. 2009; 10 (8), 3531-3546. http://dx.doi.org/10.3390/ijms10083531

Argudín, M. A., Deplano, A., Meghraoui, A., Dodémont, M., Heinrichs, A., Denis, O., & Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics. 2017; 6 (2), 12. http://dx.doi.org/10.3390/antibiotics6020012

Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., & Hashsham, S. A. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences. 2012; 109 (5), 1691-1696. http://dx.doi.org/10.1073/pnas.1120238109

Cromwell, G. L. Why and how antibiotics are used in swine production. Animal biotechnology. 2002; 13(1), 7-27. http://dx.doi.org/10.1081/ABIO-120005767

Kim, H. B., Borewicz, K., White, B. A., Singer, R. S., Sreevatsan, S., Tu, Z. J., & Isaacson, R. E. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proceedings of the National Academy of Sciences. 2012; 109 (38), 15485-15490. http://dx.doi.org/10.1073/pnas.1205147109

Burrough, E. R., Arruda, B. L., Patience, J. F., & Plummer, P. J. Alterations in the colonic microbiota of pigs associated with feeding distillers dried grains with solubles. PloS one. 2015; 10 (11), e0141337. http://dx.doi.org/10.1371/journal.pone.0141337

Holman, D. B., & Chénier, M. R. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian journal of microbiology. 2015; 61 (11), 785-798. https://doi.org/10.1139/cjm-2015-0239

Sandrin, T. R., & Demirev, P. A. Characterization of microbial mixtures by mass spectrometry. Mass Spectrometry Reviews; 2017. http://dx.doi.org/10.1002/mas.21534

Kambouris, M. E., Pavlidis, C., Skoufas, E., Arabatzis, M., Kantzanou, M., Velegraki, A., & Patrinos, G. P. Culturomics: A New Kid on the Block of OMICS to Enable Personalized Medicine. OMICS: A Journal of Integrative Biology; 2017. http://dx.doi.org/10.1089/omi.2017.0017

Villena, J., Saavedra, L., Hebert, E. M., Suda, Y., Masumizu, Y., Albarracin, L., & Kitazawa, H. Draft Genome Sequence of Lactobacillus plantarum MPL16, a Wakame-Utilizing Immunobiotic Strain Isolated from Swine Feces. Genome announcements. 2017; 5 (10), e00006-17. https://ri.conicet.gov.ar/handle/11336/64168

Campbell, T. L., Daigle, D. M., & Brown, E. D. Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochemical Journal. 2005; 389 (3), 843-852. https://doi.org/10.1042/BJ20041873

De Boever, P.; Wouters, R.; Verschaeve, L.; Berckmans, P.; Schoeters, G.; Verstraete, W. Pathogens. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl. Microbiol. Biotechnol. 2010; 53:709–714. http://dx.doi.org/10.1007/s002530000330

Lee, K. W., Park, J. Y., Jeong, H. R., Heo, H. J., Han, N. S., & Kim, J. H. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe. 2012; 18 (1), 96-102. http://dx.doi.org/10.1016/j.anaerobe.2011.12.015

Shewmaker, P.L., Camus, A.C., Bailiff, T., Steigerwalt, A.G., Morey, R.E., Carvalho, M.G. Streptococcus ictaluri sp. nov., isolated from channel catfish Ictalurus punctatus broodstock. Int. J. Syst. Evol. Microbiol. 2007; 57, 1603–1606. http://dx.doi.org/10.1099/ijs.0.64810-0

Counihan, K. L., Gill, V. A., Miller, M. A., Burek-Huntington, K. A., LeFebvre, R. B., & Byrne, B. A. Pathogenesis of Streptococcus infantarius subspecies coli Isolated from Sea Otters with Infective Endocarditis. Comparative immunology, microbiology and infectious diseases. 2015; 40, 7-17. https://doi.org/10.1016/j.cimid.2015.03.002

Clarke, L. L., Fathke, R. L., Sanchez, S., & Stanton, J. B. Streptococcus bovis/S. equinus complex septicemia in a group of calves following intramuscular vaccination. Journal of Veterinary Diagnostic Investigation. 2016; 28(4), 423-428. https://doi.org/10.1177/1040638716648364

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27 (16), 2194-2200. https://doi.org/10.1093/bioinformatics/btr381

Endo, A., Futagawa‐Endo, Y., Kawasaki, S., Dicks, L. M. T., Niimura, Y., & Okada, S. Sodium acetate enhances hydrogen peroxide production in Weissella cibaria. Letters in applied microbiology. 2009; 49(1), 136-141. https://doi.org/10.1111/j.1472-765X.2009.02633.x

Mochizuki, D., Tanaka, N., Ishikawa, M., Endo, A., Shiwa, Y., Fujita, N., & Niimura, Y. Evolution and diversification of oxygen metabolism of aerotolerant anaerobes in the order Bacillales and other bacterial taxonomic groups. The Bulletin of BISMiS. 2012; 3 (Part 1), 1-17. https://www.bismis.net/files/BulletinofBISMIS_3-1.pdf

Vidal, K., Labéta, M. O., Schiffrin, E. J., & Donnet-Hughes, A. Soluble CD14 in human breast milk and its role in innate immune responses. Acta Odontologica Scandinavica. 2001; 59 (5), 330-334. https://doi.org/10.1080/000163501750541219

Dziarski, R., Ulmer, A. J., & Gupta, D. Interactions of CD14 with components of grampositive bacteria. In CD14 in the Inflammatory Response. 2000; (74), 83-107. http://dx.doi.org/10.1159/000058761

Heinemann, C., van Hylckama Vlieg, J. E., Janssen, D. B., Busscher, H. J., van der Mei, H. C., & Reid, G. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters. 2000; 190(1), 177-180. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09282.x

Bejar, W., Gabriel, V., Amari, M., Morel, S., Mezghani, M., Maguin, E., & Chouayekh, H. Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. International journal of biological macromolecules. 2013; 52, 125-132. https://doi.org/10.1016/j.ijbiomac.2012.09.014

Himeno, H., Hanawa-Suetsugu, K., Kimura, T., Takagi, K., Sugiyama, W., Shirata, S., & Goto, S. A novel GTPase activated by the small subunit of ribosome. Nucleic acids research. 2004; 32 (17), 5303-5309. https://doi.org/10.1093/nar/gkh861

Kolter, R., & Moreno, F. Genetics of ribosomally synthesized peptide antibiotics. Annual Reviews in Microbiology. 1992; 46 (1), 141-161. https://doi.org/10.1146/annurev.mi.46.100192.001041

Nes, I. F., Diep, D. B., Håvarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 1996; 70(2),113-128. http://dx.doi.org/10.1007/BF00395929

Oppegård, C., Schmidt, J., Kristiansen, P. E., & Nissen-Meyer, J. Mutational analysis of putative helix− helix interacting motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry. 2008; 47 (18), 5242-5249. https://doi.org/10.1021/bi800289w

Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H. S., & Kristiansen, P. E. Structurefunction relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current pharmaceutical biotechnology. 2009; 10 (1), 19-37. http://dx.doi.org/10.2174/138920109787048661

Publicado

2022-01-20

Cómo citar

Vásquez-Rojas, L., Fabian-Dominguez, F., Baylon-Cuba, M. ., Sanchez-Cardenas, H., & Mialhe, E. . (2022). Identificación genómica de bacterias ácido lácticas aisladas de las heces del sajino (Pecari tajacu). Revista De Veterinaria Y Zootecnia Amazónica, 2(1), e297. https://doi.org/10.51252/revza.v2i1.297

Artículos más leídos del mismo autor/a