Remoción de mercurio por bacterias nativas aislada de relaves mineros

Autores/as

DOI:

https://doi.org/10.51252/reacae.v5i1.1134

Palabras clave:

bacterias, metilmercurio, pseudomonas, relave, remoción

Resumen

La contaminación por mercurio en zonas mineras representa un grave problema ambiental que afecta la salud humana y altera las propiedades fisicoquímicas y microbiológicas del suelo, facilitando la entrada de compuestos tóxicos como el metilmercurio en la cadena trófica. Ante esta problemática, se evaluó la eficiencia de remoción de mercurio mediante bacterias nativas aisladas de relaves mineros. De cinco cepas obtenidas, se seleccionaron dos (PA-RM01 y PA-RM03) por sus adaptaciones al ambiente contaminado y similitudes con el género Pseudomonas. Estas cepas fueron aplicadas en distintas dosis a muestras de 50 g de relaves, incubadas a 37°C por 24, 48 y 72 horas, incluyendo un control sin bacterias. El crecimiento bacteriano estuvo limitado por la disponibilidad inicial de materia orgánica y nutrientes. El tratamiento más eficaz fue el T2 (PA-RM01 con 1,67 ml), que logró una remoción de mercurio del 80,48 % a las 72 horas. Los resultados destacan el potencial de las bacterias nativas como una estrategia sostenible y efectiva para la biorremediación de suelos contaminados con mercurio en contextos mineros.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Ansari, M. M., H. Benabdelkamel, R. H. AlMalki, A. M. Abdel Rahman, E. Alnahmi, A. Masood, S. Ilavenil & K. C. Choi (2021). Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environmental Research. 199:111240. https://doi.org/10.1016/j.envres.2021.111240

Arredondo Rodolfo, Aguilar Josué & Noriega Berenice (2017). Aislamiento y caracterización de microorganismos nativos de muestras de suelos contaminados con residuos mineros. Jóvenes en la ciencia. 2:522-526. https://bit.ly/3TvOBKJ

Barman, P., P. Bandyopadhyay, A. Kati, T. Paul, A. K. Mandal, K. C. Mondal & P. K. Das Mohapatra (2018). Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management. Waste and biomass valorization.9:1319-1330. https://doi.org/10.1007/s12649-017-9912-2

Bauch, C., M. C. Gatt, S. Verhulst, J. P. Granadeiro & P. Catry (2022). Higher mercury contamination is associated with shorter telomeres in a long-lived seabird – A direct effect or a consequence of among-individual variation in phenotypic quality? Science of the Total Environment. 839. https://doi.org/10.1016/j.scitotenv.2022.156359

Benslama, O. & A. Boulahrouf (2016). High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics Data. 8:61-66. https://doi.org/10.1016/j.gdata.2016.03.005

Besnard, L., G. Le Croizier, F. Galván-Magaña, D. Point, E. Kraffe, J. Ketchum, R. O. Martinez Rincon & G. Schaal (2021). Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes. Environmental Pollution. 283. https://doi.org/10.1016/j.envpol.2021.117066

Bjørklund, G., M. Dadar, J. Mutter & J. Aaseth (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research. 159:545-554. https://doi.org/10.1016/j.envres.2017.08.051

Bourdineaud, J. P., G. Durn, B. Režun, A. Manceau & J. Hrenović (2020). The chemical species of mercury accumulated by Pseudomonas idrijaensis, a bacterium from a rock of the Idrija mercury mine, Slovenia. Chemosphere. 248. https://doi.org/10.1016/j.chemosphere.2020.126002

Caiza, G. (2018). Mercurio en el Suelo. Contaminación y remediación. Universidad Complutense, Facultad de Farmacia:1-20. https://bit.ly/41JBpEl

Calheiros, C. S. C., S. I. A. Pereira & P. M. L. Castro (2018). Culturable bacteria associated to the rhizosphere and tissues of Iris pseudacorus plants growing in a treatment wetland for winery wastewater discharge. Ecological Engineering. 115:67-74. https://doi.org/10.1016/j.ecoleng.2018.02.011

Cattani, I., H. Zhang, G. M. Beone, A. A. M. Del Re, R. Boccelli & M. Trevisan (2019). The role of natural purified humic acids in modifying mercury accessibility in water and soil. Journal of Environmental Quality. 38:493-501. https://doi.org/10.2134/jeq2008.0175

Chang, J., Y. Shi, G. Si, Q. Yang, J. Dong & J. Chen (2020). The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. Journal of Hazardous Materials. 396:122638. https://doi.org/10.1016/j.jhazmat.2020.122638

Chen, Y., Y. Guo, Y. Liu, Y. Xiang, G. Liu, Q. Zhang, Y. Yin, Y. Cai & G. Jiang (2023). Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. Science of the Total Environment. 868:161709. https://doi.org/10.1016/j.scitotenv.2023.161709

Cheng, C., J. Teng, G. Xu, H. Wei & C. Geng (2024). Modelling polarization effect in electrical conductivity of frozen soil. Cold Regions Science and Technology. 218:104075. https://doi.org/10.1016/j.coldregions.2023.104075

Choudhary, V., K. Wu, Z. Zhang, M. Dulchavsky, T. Barkman, J. C. A. Bardwell & F. Stull (2022). The enzyme pseudooxynicotine amine oxidase from Pseudomonas putida S16 is not an oxidase, but a dehydrogenase. Journal of Biological Chemistry. 298:102251. https://doi.org/10.1016/j.jbc.2022.102251

Correa, O. S. (2016). Los Microorganismos del suelo y su rol indiscutido en la nutrición vegetal. https://bit.ly/41pj92R

Custodio, M., R. Peñaloza, W. Cuadrado, S. Ochoa, D. Álvarez & F. Chanamé (2021). Data on the detection of essential and toxic metals in soil and corn and barley grains by atomic absorption spectrophotometry and their effect on human health. Chemical Data Collections. 32:100650. https://doi.org/10.1016/j.cdc.2021.100650

Dash, H. R. & S. Das (2012). Mercury bioremediation and the importance of bacterial mer genes. https://doi.org/10.1016/j.ibiod.2012.07.023

Dermont, G., M. Bergeron, G. Mercier & M. Richer-Laflèche (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials. 152:1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043

Dietz, R., R. J. Letcher, J. P. Desforges, I. Eulaers, C. Sonne, S. Wilson, E. Andersen-Ranberg, N. Basu, B. D. Barst, J. O. Bustnes, J. Bytingsvik, T. M. Ciesielski, P. E. Drevnick, G. W. Gabrielsen, A. Haarr, K. Hylland, B. M. Jenssen, M. Levin, M. A. McKinney, R. D. Nørregaard, K. E. Pedersen, J. Provencher, B. Styrishave, S. Tartu, J. Aars, J. T. Ackerman, A. Rosing-Asvid, R. Barrett, A. Bignert, E. W. Born, M. Branigan, B. Braune, C. E. Bryan, M. Dam, C. A. Eagles-Smith, M. Evans, T. J. Evans, A. T. Fisk, M. Gamberg, K. Gustavson, C. A. Hartman, B. Helander, M. P. Herzog, P. F. Hoekstra, M. Houde, K. Hoydal, A. K. Jackson, J. Kucklick, E. Lie, L. Loseto, M. L. Mallory, C. Miljeteig, A. Mosbech, D. C. G. Muir, S. T. Nielsen, E. Peacock, S. Pedro, S. H. Peterson, A. Polder, F. F. Rigét, P. Roach, H. Saunes, M. H. S. Sinding, J. U. Skaare, J. Søndergaard, G. Stenson, G. Stern, G. Treu, S. S. Schuur & G. Víkingsson (2019). Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment. 696:133792. https://doi.org/10.1016/j.scitotenv.2019.133792

Dunham-Cheatham, S., B. Mishra, S. Myneni & J. B. Fein (2015). The effect of natural organic matter on the adsorption of mercury to bacterial cells. Geochimica et Cosmochimica Acta. 150:1-10. https://doi.org/10.1016/j.gca.2014.11.018

Escarabajal Arrieta, M. D. (2001). ¿Alcoholismo o acetaldehismo? el papel de la catalasa y la aldehído deshidrogenasa cerebrales. Trastornos Adictivos. 3:290-291. https://doi.org/10.1016/S1575-0973(01)78583-2

Ferreres, G., K. Ivanova, J. Torrent-Burgués & T. Tzanov (2023). Multimodal silver-chitosan-acylase nanoparticles inhibit bacterial growth and biofilm formation by Gram-negative Pseudomonas aeruginosa bacterium. Journal of Colloid and Interface Science. 646:576-586. https://doi.org/10.1016/j.jcis.2023.04.184

Francisco López, A., E. G. Heckenauer Barrón & P. M. Bello Bugallo (2022). Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modelling and application to sustainable hypothetical scenarios. Environmental Monitoring and Assessment. 194:707. https://doi.org/10.1007/s10661-022-10208-3

Garcha, S., N. Verma & S. K. Brar (2016). Isolation, characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge samples and evaluation of their biodegradability. Water Resources and Industry. 16:19-28. https://doi.org/10.1016/j.wri.2016.10.002

Ge, Q., Q. Tian, R. Hou & S. Wang (2022). Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil. Chemosphere. 291:132835. https://doi.org/10.1016/j.chemosphere.2021.132835

Ghosh, S., S. Banerjee, A. Mukherjee & P. Bhattacharyya (2023). Appraise potassium chemistry and distribution patterns in tailing soil, India: Through quantity - Intensity relations and multi model statistical methods. Chemosphere. 335:139184. https://doi.org/10.1016/j.chemosphere.2023.139184

Golding, G. R., R. Sparling & C. A. Kelly (2008). Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Applied and Environmental Microbiology. 74:667-675. https://doi.org/10.1128/AEM.00717-07

González-Reguero, D., M. Robas-Mora, A. Probanza Lobo & P. A. Jiménez Gómez (2023). Bioremediation of environments contaminated with mercury. Present and perspectives. World Journal of Microbiology and Biotechnology. 39. https://doi.org/10.1007/s11274-023-03686-1

Gworek, B., W. Dmuchowski & A. H. Baczewska-Dąbrowska (2020). Mercury in the terrestrial environment: a review. Environmental Sciences Europe. 32. https://doi.org/10.1186/s12302-020-00401-x

Han, T., D. Li, K. Liu, J. Huang, L. Zhang, S. Liu, A. Shah, L. Liu, G. Feng & H. Zhang (2023). Soil potassium regulation by initial K level and acidification degree when subjected to liming: A meta-analysis and long-term field experiment. CATENA. 232:107408. https://doi.org/10.1016/j.catena.2023.107408

Han, T., K. Liu, J. Huang, M. N. Khan, Z. Shen, J. Li & H. Zhang (2024). Temporal and spatial characteristics of paddy soil potassium in China and its response to organic amendments: A systematic analysis. Soil and Tillage Research. 235:105894. https://doi.org/10.1016/j.still.2023.105894

Holoka, M. H. (2003). Effect of pH on Mercury Uptake by an Aquatic Bacterium: Implications for Hg Cycling:2941-2946. https://doi.org/10.1021/es026366o

Hood, S. K. & E. A. Zottola (1997). Isolation and identification of adherent gram-negative microorganisms from four meat-processing facilities. Journal of food protection. 60:1135-1138. https://doi.org/10.4315/0362-028X-60.9.1135

Imron, M. F., S. B. Kurniawan & A. Soegianto (2019). Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. Journal of Environmental Management. 241:113-122. https://doi.org/10.1016/j.jenvman.2019.04.017

Indecopi (2001). Suelos. Descripción e Identificación de suelos. Procedimiento visual-manual. Páginas 14-17. https://bit.ly/41vXaaA

Irawati, W., Patricia, Y. Soraya & A. H. Baskoro (2012). A study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, Indonesia. Hayati Journal of Biosciences. 19:197-200. https://doi.org/10.4308/hjb.19.4.197

Ito, H., Y. Tomura, J. Oshida, S. Fukui, T. Kodama & D. Kobayashi (2023). The role of gram stain in reducing broad-spectrum antibiotic use: A systematic literature review and meta-analysis. Infectious Diseases Now. 53:104764. https://doi.org/10.1016/j.idnow.2023.104764

Jafari, S. A., S. Cheraghi, M. Mirbakhsh, R. Mirza & A. Maryamabadi (2015). Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. Clean - Soil, Air, Water. 43:118-126. https://doi.org/10.1002/clen.201300616

Joorabian, S., E. Abdollahzadeh & A. Esmaili-sari (2023). Journal of Hazardous Materials Advances A review of mercury contamination in representative flora and fauna of Iran : seafood consumption advisories. Journal of Hazardous Materials Advances. 10:100291. https://doi.org/10.1016/j.hazadv.2023.100291

Julca-Otiniano, A., L. Meneses-Florián, R. Blas-Sevillano & S. Bello-Amez (2006). La materia orgánica, importancia y experiencia de su uso en la agricultura. Idesia (Arica). 24:49-61. https://doi.org/10.4067/s0718-34292006000100009

Kelly, C. A., J. W. M. Rudd & M. H. Holoka (2003). Effect of ph on mercury uptake by an aquatic bacterium: Implications for Hg cycling. Environmental Science and Technology. 37:2941-2946. https://doi.org/10.1021/es026366o

Kucharski, R., A. Sas-Nowosielska, E. Małkowski, J. Japenga, J. M. Kuperberg, M. Pogrzeba & J. Krzyzak (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil. 273:291-305. https://doi.org/10.1007/s11104-004-8068-6

Kunugiza, Y., M. Tamaki, T. Miyamoto, S. Tsuji, K. Takahi, M. Nishikawa, A. Yoshida, K. Nomura, K. Iwamoto, T. Fujito, K. Toge, T. Ishibashi, S. Okada & T. Tomita (2023). Gram staining of the preoperative joint aspiration for the diagnosis of infection after total knee arthroplasty. Journal of Joint Surgery and Research. 1:175-178. https://doi.org/10.1016/j.jjoisr.2023.07.005

L. Rodriguez (2016). Conservación de los recursos naturales para una agricultura sostenible. https://bit.ly/3v6yclS

Li, L., F. Wang, B. Meng, M. Lemes, X. Feng & G. Jiang (2020). Speciation of methylmercury in rice grown from a mercury mining area. Environmental Pollution. 158:3103-3107. https://doi.org/10.1016/j.envpol.2010.06.028

Lopardo, H. A. (2016). Introducción a la microbiología clínica. Página (U. N. de L. P. – E. de la U. de La Plata, Ed.). Buenos Aires. https://bit.ly/3RMQeCm

Ma, J., G. Liu, J.-Y. Zhai, K. Zhao, Y. Wu, R. Yu, G. Hu & Y. Yan (2023). Roxarsone biotransformation by a nitroreductase and an acetyltransferase in Pseudomonas chlororaphis, a bacterium isolated from soil. Chemosphere. 345:140558. https://doi.org/10.1016/j.chemosphere.2023.140558

Mahbub, K. R., M. M. Bahar, M. Labbate, K. Krishnan, S. Andrews, R. Naidu & M. Megharaj (2017a). Bioremediation of mercury: not properly exploited in contaminated soils! Applied Microbiology and Biotechnology. 101:963-976. https://doi.org/10.1007/s00253-016-8079-2

Mahbub, K. R., K. Krishnan, R. Naidu & M. Megharaj (2017b). Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. Journal of Environmental Sciences (China). 51:128-137. https://doi.org/10.1016/j.jes.2016.06.032

Malik, A. & A. Aleem (2011). Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater. Environmental Monitoring and Assessment. 178:293-308. https://doi.org/10.1007/s10661-010-1690-2

Mantey, J., K. B. Nyarko, F. Owusu-Nimo, K. A. Awua, C. K. Bempah, R. K. Amankwah, W. E. Akatu & E. Appiah-Effah (2020). Mercury contamination of soil and water media from different illegal artisanal small-scale gold mining operations (galamsey). Heliyon. 6:e04312. https://doi.org/10.1016/j.heliyon.2020.e04312

Martínez-Sánchez, L., F. J. Vasallo, F. García-Garrote, L. Alcalá, M. Rodríguez-Créixems & E. Bouza (1998). Clinical isolation of a DF-3 microorganism and review of the literature. Clinical Microbiology and Infection. 4:344-346. https://doi.org/10.1111/j.1469-0691.1998.tb00070.x

Mary Kensa, V. (2011). Bioremediation - An overview. Journal of Industrial Pollution Control 27:161-168. https://bit.ly/3RlA81i

McCarthy, D., G. C. Edwards, M. S. Gustin, A. Care, M. B. Miller & A. Sunna (2017). An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere. 184:694-699. https://doi.org/10.1016/j.chemosphere.2017.06.051

Medvinsky-Roa, G. ;Caroca, V; Vallejos, J. (2015). Informe sobre la situación de los relaves mineros en Chile para ser presentado en el cuarto informe periódico de Chile para el comité de derechos económicos, sociales y culturales, perteneciente al Consejo Económico Social de la Naciones Unidas. Relave.Org.:1-23. https://bit.ly/3GTASpm

Mezzari, M. P., D. M. H. Zimermann, H. X. Corseuil & A. V. Nogueira (2011). Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils. Revista Brasileira de Ciência do Solo. 35:2227-2236. https://doi.org/10.1590/s0100-06832011000600038

Ministerio de Agricultura y Riego (2017). Manual de procedimientos de los análisis de suelos y agua con fines de riego. manual de procedimientos de los análisis de suelos y agua con fines de riego 1. https://bit.ly/3Rs4saC

Ministerio del Ambiente (2014). Guía para el muestreo de suelos. Ministerio del Ambiente:72. https://bit.ly/3RO59fG

Mohan, M., M. S. S. Chandran & E. V. Ramasamy (2021). Mercury contamination at Vembanad Lake and near-shore regions in the southwest coast of India. Regional Studies in Marine Science. 44:101754. https://doi.org/10.1016/j.rsma.2021.101754

Molina, L. T., L. Gallardo, M. Andrade, D. Baumgardner, M. Borbor-Cõrdova, R. Bõrquez, G. Casassa, F. Cereceda-Balic, L. Dawidowski, R. Garreaud, N. Huneeus, F. Lambert, J. L. McCarty, J. Mc Phee, M. Mena-Carrasco, G. B. Raga, C. Schmitt & J. P. Schwarz (2015). Pollution and its impacts on the South American Cryosphere. Earth’s Future. 3:345-369. https://doi.org/10.1002/2015EF000311

Muñoz, L., P. Olivera, M. Santillán & C. Tamariz (2019). Microorganismos tolerantes a metales pesados del pasivo minero Santa Rosa, Jangas (Perú). Revista peruana de Biología. 26:109-118.

Nagahiro, T., B. K. Puri, M. Katyal & M. Satake (1984). Determination of nickel by flame atomic-absorption spectrophotometry after separation by adsorption of its nioxime complex on microcrystalline naphthalene. Talanta. 31:1008-1009. https://doi.org/10.1016/0039-9140(84)80235-0

Nguyen, T. H., S. Won, M.-G. Ha, D. D. Nguyen & H. Y. Kang (2021). Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. Chemosphere. 282:131108. https://doi.org/10.1016/j.chemosphere.2021.131108

Ochoa-Agudelo, S., J. Bedoya-Velez & F. Paternina-Mercado (2022). Comportamiento cualitativo de Pseudomonas aisladas de aguas residuales, expuestas a mercurio. Informador Técnico. 86:205-219. https://doi.org/10.23850/22565035.4353

Ogunremi, O. O., C. O. Ogunkunle & P. O. Fatoba (2023). Characterization and remediation potential of sorghum and rice straw-derived biochars on incubated spent-oil contaminated soil. Scientific African. 22:e01921. https://doi.org/10.1016/j.sciaf.2023.e01921

Okino, S., K. Iwasaki, O. Yagi & H. Tanaka (2000). Development of a biological mercury removal-recovery system. Biotechnology Letters. 22:783-788. https://doi.org/10.1023/A:1005653825272

ONU (2015). Evaluación mundial sobre el mercurio. Panorama:1-303. https://bit.ly/47acKts

Oraegbunam, C. J., S. E. Obalum, T. Watanabe, Y. M. Madegwa & Y. Uchida (2022). Differences in carbon and nitrogen retention and bacterial diversity in sandy soil in response to application methods of charred organic materials. Applied Soil Ecology. 170:104284. https://doi.org/10.1016/j.apsoil.2021.104284

Patel, J. H., D. J. Ong, C. R. Williams, L. K. Callies & A. E. Wills (2022). Elevated pentose phosphate pathway flux supports appendage regeneration. Cell Reports. 41:111552. https://doi.org/10.1016/j.celrep.2022.111552

Peng, Y., Q. Liu, D. Xu, J. Fu, L. Zhang, L. Qiu & J. Lin (2023). M4IDP stimulates ROS elevation through inhibition of mevalonate pathway and pentose phosphate pathway to inhibit colon cancer cells. Biochemical Pharmacology. 217:115856. https://doi.org/10.1016/j.bcp.2023.115856

Powers-Fletcher, M. V & A. G. Smulian (2023). The low sensitivity of direct smears limit the utility of intraoperative gram stains for predicting culture-positivity in acute surgical settings. Diagnostic Microbiology and Infectious Disease. 106:115923. https://doi.org/10.1016/j.diagmicrobio.2023.115923

Pribil, M. J., V. Rimondi, P. Costagliola, P. Lattanzi & D. L. Rutherford (2020). Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy. Applied Geochemistry. 117:104600. https://doi.org/10.1016/j.apgeochem.2020.104600

Rakhmanova, A., T. Wang, G. Xing, L. Ma, Y. Hong, Y. Lu, L. Xin, W. Xin, Q. Zhu & X. Lü (2021). Isolation and identification of microorganisms in Kazakhstan koumiss and their application in preparing cow-milk koumiss. Journal of Dairy Science. 104:151-166. https://doi.org/10.3168/jds.2020-18527

Rasmussen, L. D. & S. J. Sørensen (2001). Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiology Ecology. 36:1-9. https://doi.org/10.1016/S0168-6496(01)00111-8

Ray, A. & A. Selvakumar (2000). Laboratory studies on the remediation of mercury contaminated soils. Remediation Journal. 10:49-56. https://doi.org/10.1002/rem.3440100406

Rice, K. M., E. M. Walker, M. Wu, C. Gillette & E. R. Blough (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health. 47:74-83. https://doi.org/10.3961/jpmph.2014.47.2.74

Rivera Flores, V. K., T. A. DeMarsh & S. D. Alcaine (2021). Lactose oxidase: Enzymatic control of Pseudomonas to delay age gelation in UHT milk. Journal of Dairy Science. 104:2758-2772. https://doi.org/10.3168/jds.2020-19452

Rwiza, M. J., E. Focus, J. Bayuo, J. M. Kimaro, M. Kleinke, T. J. Lyasenga, J. T. Mosses & J. Marwa (2023). Artisanal and small-scale mining in Tanzania and health implications: A policy perspective. Heliyon. 9:e14616. https://doi.org/10.1016/j.heliyon.2023.e14616

Sanyal, S. K., T. Pukala, P. Mittal, F. Reith, J. Brugger, B. Etschmann & J. Shuster (2023). From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. Chemosphere. 339:139657. https://doi.org/10.1016/j.chemosphere.2023.139657

Shahzadi, S., Z. Khan, A. Rehman, M. A. Nisar, S. Z. Hussain & S. T. Asma (2019). Isolation and characterization of bacillus amyloliquefaciens 6A: A novel kerosene oil degrading bacterium. Environmental Technology & Innovation. 14:100359. https://doi.org/10.1016/j.eti.2019.100359

Shen, C. & Y. Zhang (2022). CHAPTER 15 - Biochemistry test of bacteria-1 (urease test, carbohydrate fermentation, catalase test, oxidase test). Páginas 67-76 en C. Shen y Y. Zhang, editores. Introductory Microbiology Lab Skills and Techniques in Food Science. Academic Press. https://doi.org/10.1016/B978-0-12-821678-1.00005-8

Shi, D., D. Li, Y. Zhang, X. Li, Y. Tao, Z. Yan & Y. Ao (2019). Effects of Pseudomonas alkylphenolica KL28 on immobilization of Hg in soil and accumulation of Hg in cultivated plant. Biotechnology Letters. 41:1343-1354. https://doi.org/10.1007/s10529-019-02736-9

Tao, L. L., Y. P. Xiang, D. Y. Wang, M. L. Huang & H. Shen (2016). Identification of a facultative bacterium strain with the ability to methylate mercury under both aerobic and anaerobic conditions. Huanjing Kexue/Environmental Science. 37:4389-4394. https://doi.org/10.13227/j.hjkx.201603198

Tapia-Vázquez, I., R. Sánchez-Cruz, M. Arroyo-Domínguez, V. Lira-Ruan, A. Sánchez-Reyes, M. del Rayo Sánchez-Carbente, D. Padilla-Chacón, R. A. Batista-García & J. L. Folch-Mallol (2020). Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiological Research. 232:126394. https://doi.org/10.1016/j.micres.2019.126394

Vermote, L., J. De Roos, M. Cnockaert, P. Vandamme, S. Weckx & L. De Vuyst (2023). New insights into the role of key microorganisms and wooden barrels during lambic beer fermentation and maturation. International Journal of Food Microbiology. 394:110163. https://doi.org/10.1016/j.ijfoodmicro.2023.110163

Wang, J. & M. Aghajani Delavar (2023). Techno-economic analysis of phytoremediation: A strategic rethinking. Science of The Total Environment. 902:165949. https://doi.org/10.1016/j.scitotenv.2023.165949

Wang, X., W. Yuan, C.-J. Lin & X. Feng (2022). Mercury cycling and isotopic fractionation in global forests. Critical Reviews in Environmental Science and Technology. 52:3763-3786. https://doi.org/10.1080/10643389.2021.1961505

Welman-Purchase, M. D., J. Castillo, A. Gomez-Arias, A. Matu & R. N. Hansen (2024). First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds. Science of The Total Environment. 906:167174. https://doi.org/10.1016/j.scitotenv.2023.167174

West, A. W., D. J. Ross & J. C. Cowling (1986). Changes in microbial C, N, P and ATP contents, numbers and respiration on storage of soil. Soil Biology and Biochemistry. 18:141-148. https://doi.org/10.1016/0038-0717(86)90018-0

Wood, T. (1985). 1 - Introduction. Páginas 1-2 en T. Wood, editor. The pentose phosphate pathway. Academic Press. https://doi.org/10.1016/B978-0-12-762860-8.50005-4

Xiang, Y., Y. Wang, H. Shen & D. Wang (2020). The draft genome sequence of Pseudomonas putida Strain TGRB4, an aerobic bacterium capable of producing methylmercury. Current Microbiology. 77:522-527. https://doi.org/10.1007/s00284-019-01670-3

Xu, J. (2018). Remediación de suelos contaminados con mercurio y metilación biológica del mercurio en el paisaje. https://bit.ly/4aq5cWe

Yan, Z., W. Ding, G. Xie, M. Yan, J. Li, Y. Han, X. Xiong & C. Wang (2023). Identification of cadmium phytoavailability in response to cadmium transformation and changes in soil pH and electrical conductivity. Chemosphere. 342:140042. https://doi.org/10.1016/j.chemosphere.2023.140042

Yang, G., H. Wang, X. Zhang & B. Ji. (2023). Microalgal-bacterial granular sludge under constant dark and weak light conditions: Morphology, performance and microbial community. Algal Research. 71:103050. https://doi.org/10.1016/j.algal.2023.103050

Yang, Y. kui, C. Zhang, X. jun SHI, T. Lin & D. yong Wang (2007). Effect of organic matter and pH on mercury release from soils. Journal of Environmental Sciences. 19:1349-1354. https://doi.org/10.1016/S1001-0742(07)60220-4

Yao, H., H. Wang, J. Ji, A. Tan, Y. Song & Z. Chen (2023). Isolation and identification of mercury-tolerant bacteria LBA119 from molybdenum-lead mining soils and their removal of Hg2+. Toxics. 11:261. https://doi.org/10.3390/toxics11030261

Zhang, H., A. Degré, C. De Clerck, S. Li, J. Lian, Y. Peng, T. Sun, L. Luo, Y. Yue, G. Li & J. Zhang (2024). Changes in bacterial community structure and carbon metabolism in sandy soil under the long-term application of chitin-rich organic material and attapulgite. Applied Soil Ecology. 194:105161. https://doi.org/10.1016/j.apsoil.2023.105161

Zhao, C., J. Wang, F. Zang, W. Tang, G. Dong & Z. Nan (2022). Water content and communities of sulfur-oxidizing bacteria affect elemental sulfur oxidation in silty and sandy loam soils. European Journal of Soil Biology. 111:103419. https://doi.org/10.1016/j.ejsobi.2022.103419

Descargas

Publicado

2025-01-20

Cómo citar

Huayhua-Mamani, L. J., & Condori-Pari, E. D. (2025). Remoción de mercurio por bacterias nativas aislada de relaves mineros. Revista Amazónica De Ciencias Ambientales Y Ecológicas, 5(1), e1134. https://doi.org/10.51252/reacae.v5i1.1134

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.