Phytoremediation Effectiveness in Contaminated Soils Using Phaseolus vulgaris L. and Zea mays L.

Authors

DOI:

https://doi.org/10.51252/reacae.v4i1.903

Keywords:

biomass, copper, metals, lead, soils

Abstract

The effectiveness of Phaseolus vulgaris L. and Zea mays L. for the phytoremediation of contaminated soils in Cuñumbuqui, San Martín, Peru, was evaluated. Four treatments were used: T1 (agricultural soil with P. vulgaris), T2 (agricultural soil with Z. mays), T3 (contaminated soil with P. vulgaris), and T4 (contaminated soil with Z. mays), with a completely randomized experimental design and a 100-day period in pots under controlled conditions. The concentrations of copper (Cu), lead (Pb), and cadmium (Cd) in both soil and plants, along with biometric parameters, were measured. Results showed that P. vulgaris in T3 accumulated up to 11.47 mg/kg of copper, while Z. mays in T4 accumulated 5.32 mg/kg of lead. Both crops exhibited low cadmium accumulation. In terms of growth, P. vulgaris reached 42.3 cm in height and 14.6 g of dry weight in T3, whereas Z. mays in T4 performed better, reaching 85.7 cm and 27.3 g. The treatments in contaminated soils were more effective than the agricultural controls, demonstrating that P. vulgaris and Z. mays are viable options for phytoremediation, with P. vulgaris excelling in copper removal and Z. mays in lead accumulation.

Downloads

Download data is not yet available.

References

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Environmental Science and Pollution Research, 24(5), 4100-4118. https://doi.org/10.1007/s11356-017-0454-0

Chirinos, C., & Fernández, E. (2022). Metodología de la investigación científica. Editorial Académica Española.

Daryabeigi, Z., & Muhling, K. H. (2022). Heavy metal accumulation in crops and its potential risk in agricultural soil. Environmental Chemistry and Ecotoxicology, 42(1), 37-56. https://doi.org/10.1016/j.ecoenv.2022.113612

Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1-18. https://doi.org/10.15666/aeer/0301_001018

Hu, X., Li, X., & Zhang, Y. (2019). Ecological restoration and phytoremediation of contaminated soils. Environmental Pollution, 246, 223-234. https://doi.org/10.1016/j.envpol.2018.11.039

Julca, H. (2022). El uso de especies nativas en la recuperación de suelos contaminados por metales pesados en la región andina. Universidad Nacional Agraria La Molina.

Landeros, E. A., Ochoa, P. C., & Ramírez, P. F. (2010). Eficiencia de las plantas en la remoción de metales pesados en suelos contaminados. Revista Latinoamericana de Ciencias Sociales y Ambientales, 9(2), 34-45. https://doi.org/10.5897/JLRG.2020.0234

Lasat, M. M. (2002). Phytoremediation of toxic metals: A review of the state of the art. Journal of Environmental Quality, 31(3), 1113-1121. https://doi.org/10.2134/jeq2002.1113

Marques-Benavides, L., García, E., & Gómez, F. (2020). Evaluación de la fitorremediación en suelos agrícolas contaminados. Ediciones Técnicas.

Martínez-Manchego, A., Pérez, D., & Rodríguez, M. (2021). Integración de especies vegetales para mejorar la fitorremediación de suelos contaminados: Un enfoque práctico. Revista de Ecología y Medioambiente, 17(2), 22-31. https://doi.org/10.22201/zemann.2021.172-209

Novoa, M., Chavarría, D., & Ramírez, J. (2022). La fitorremediación en suelos afectados por residuos sólidos en la región San Martín, Perú. Revista de Investigaciones Ambientales, 8(3), 45-56. https://doi.org/10.1146/ria.2022.08.03.045

Salt, D. E., Blaylock, M., & Schaaf, G. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment. Environmental Science and Technology, 29(2), 63-72. https://doi.org/10.1021/es00005a030

Siddiqui, M. H., Al-Whaibi, M. H., & Naz, A. (2020). Phytoremediation of heavy metals: A novel approach for the sustainable management of contaminated soils. Journal of Environmental Management, 273, 12-19. https://doi.org/10.1016/j.jenvman.2020.111078

Wang, F., Wang, S., & Zhang, L. (2019). Phytoremediation of heavy metal-contaminated soils: Advances and future prospects. Environmental Science and Pollution Research, 26(1), 234-248. https://doi.org/10.1007/s11356-019-06945-9

Weyant, P. E. (2022). Climatic and ecological factors influencing phytoremediation efficiency in tropical regions. Springer.

Yao, Z., Zhang, J., & Ma, M. (2023). Phytoremediation of heavy metals in contaminated soils using hyperaccumulator plants: Recent advances and future prospects. Environmental Pollution, 276, 116667. https://doi.org/10.1016/j.envpol.2021.116667

Vizconde-Suárez, M. (2023). Evaluación de especies nativas para la remediación de suelos contaminados en el Perú. Revista Peruana de Ecología, 24(1), 49-61. https://doi.org/10.12804/peecologia.2023.01.049

Zhang, Z., & Chen, J. (2019). The role of phytoremediation in the environmental management of heavy metals. Journal of Environmental Science and Technology, 32(6), 105-115. https://doi.org/10.1007/s11356-019-06880-7

Published

2025-01-20

How to Cite

Amasifuen-Tanchiva, L. T., De la Cruz-Carranza, L. F., & Ordóñez-Sánchez, L. A. (2025). Phytoremediation Effectiveness in Contaminated Soils Using Phaseolus vulgaris L. and Zea mays L . Revista Amazónica De Ciencias Ambientales Y Ecológicas, 4(1), e903. https://doi.org/10.51252/reacae.v4i1.903

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.