Inclusive innovation: Implementation of low-cost proximity sensors for canes

Authors

DOI:

https://doi.org/10.51252/rcsi.v5i1.838

Keywords:

autonomy, accessibility, ultrasonic, IoT, microcontrollers

Abstract

Visually impaired individuals face challenges in moving safely, affecting their independence and increasing the risk of accidents. This work presents the development of a prototype accessory for canes with ultrasonic sensors, designed to enhance mobility and independence at a low cost. The device, based on IoT, uses an Arduino Nano, an HC-SR04 ultrasonic sensor, and a buzzer, generating progressive acoustic alerts based on obstacle proximity. During testing, it demonstrated high effectiveness in detecting large objects and issuing immediate alerts; however, it showed limitations with small objects, liquids, and humid environments. The need to optimize the battery, which is currently replaceable, was identified, and as a future improvement, the incorporation of wireless charging technologies and LIDAR sensors was proposed for more precise detection. Additionally, it was recommended to include a night LED to alert others and improve the cane's materials for greater durability. The prototype's design is lightweight, accessible, and functional, prioritizing simplicity without compromising reliability. Compared to similar devices, it stands out for its effectiveness and low cost, offering a viable solution to improve the mobility and independence of visually impaired individuals, reducing risks and facilitating social integration.

References

Bansal, M., Malik, S., Kumar, M., & Meena, N. (2020). Arduino based Smart Walking Cane for Visually Impaired People. 2020 Fourth International Conference on Inventive Systems and Control (ICISC), 462–465. https://doi.org/10.1109/ICISC47916.2020.9171209 DOI: https://doi.org/10.1109/ICISC47916.2020.9171209

Choe, S., Cha, S.-Y., Cheon, D., Kwak, S.-B., & Kim, H.-S. (2023). Smart Cane Using Time-Division Overlapped-Beam Based Multi-Ultrasonic Sensors. The Journal of Korean Institute of Communications and Information Sciences, 48(9), 1091–1101. DBpia. https://doi.org/10.7840/kics.2023.48.9.1091 DOI: https://doi.org/10.7840/kics.2023.48.9.1091

Díaz Alva, A. (2023). Bastón inteligente: Innovación inclusiva. Willachikuy, 3(2), 3–4. https://doi.org/10.46363/willachikuy.v3i2.2 DOI: https://doi.org/10.46363/willachikuy.v3i2.2

Gharghan, S. K., Kamel, H. S., Marir, A. A., & Saleh, L. A. (2024). Smart Stick Navigation System for Visually Impaired Based on Machine Learning Algorithms Using Sensors Data. Journal of Sensor and Actuator Networks, 13(4). https://doi.org/10.3390/jsan13040043 DOI: https://doi.org/10.3390/jsan13040043

Harini, A., Buvana, C., Harshini, M., Keerthana, S., Prabhu, D., & Umamaheswaran, S. K. (2024). Iot Based Smart Assistant Cane For The Visually Impaired. 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), 1–6. https://doi.org/10.1109/IC3IoT60841.2024.10550222 DOI: https://doi.org/10.1109/IC3IoT60841.2024.10550222

Jang, D.-K., Yang, D., Jang, D.-Y., Choi, B., Lee, S.-H., & Shin, D. (2024). ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling. ACM Transactions on Graphics, 43(6). https://doi.org/10.1145/3687991 DOI: https://doi.org/10.1145/3687991

Leporini, B., Raucci, M., Rosellini, M., & Forgione, N. (2023). Towards a Haptic-based Virtual Cane to Assist Blind People in Obstacle Detection. Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, 10–13. https://doi.org/10.1145/3594806.3594864 DOI: https://doi.org/10.1145/3594806.3594864

Ma, Z., Wang, S., Ma, Z., Li, J., Zhao, L., Li, Z., Wang, S., Shuang, Y., Wang, J., Wang, F., Xia, W., Jian, J., He, Y., Wang, J., Guo, P., & Wang, H. (2024). Efficient and Stable Photoassisted Lithium-Ion Battery Enabled by Photocathode with Synergistically Boosted Carriers Dynamics. Nano-Micro Letters, 17(1), 74. https://doi.org/10.1007/s40820-024-01570-7 DOI: https://doi.org/10.1007/s40820-024-01570-7

Mai, C., Chen, H., Zeng, L., Li, Z., Liu, G., Qiao, Z., Qu, Y., Li, L., & Li, L. (2024). A Smart Cane Based on 2D LiDAR and RGB-D Camera Sensor-Realizing Navigation and Obstacle Recognition. Sensors, 24(3). https://doi.org/10.3390/s24030870 DOI: https://doi.org/10.3390/s24030870

Minatani, K. (2024). Proposal for a Versatile Smart White Cane Infrastructure Using a 3D Printer: As a R&D Platform and a Practical Product Design. Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments, 21–26. https://doi.org/10.1145/3652037.3652064 DOI: https://doi.org/10.1145/3652037.3652064

Mocanu, A., Sita, V., Avram, C., & Aştilean, A. (2024). Enhanced Cane for Blind People Mobility Assistance. 2024 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1–6. https://doi.org/10.1109/AQTR61889.2024.10554132 DOI: https://doi.org/10.1109/AQTR61889.2024.10554132

Muktha., D. S., Niveditha, G., Pinto, N. A., & Sinha, S. (2024). Enhancing Mobility: A Smart Cane with Integrated Navigation System and Voice-Assisted Guidance for the Visually Impaired. 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 1124–1129. https://doi.org/10.1109/CSNT60213.2024.10546111 DOI: https://doi.org/10.1109/CSNT60213.2024.10546111

Nazri, N. M. A., Fauzi, S. S. M., Gining, R. A. J., Razak, T. R., & Jamaluddin, M. N. F. (2020). Smart Cane for Visually Impaired with Obstacle, Water Detection and GPS. International Journal of Computing and Digital Systems. https://api.semanticscholar.org/CorpusID:222078779

Panazan, C.-E., & Dulf, E.-H. (2024). Intelligent Cane for Assisting the Visually Impaired. Technologies, 12(6). https://doi.org/10.3390/technologies12060075 DOI: https://doi.org/10.3390/technologies12060075

Paredes Orozco, D. L., & Domínguez-Morales, M. (2024). Smart Cane for the Visually Impaired. In Y. Torres, A. M. Beltran, M. Felix, E. Peralta, & D. F. Larios (Eds.), Recent Advances and Emerging Challenges in STEM (pp. 451–460). Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-64106-0_49

Remya, V., Subramani, S., Gokulnaath, M., Sibiraj, T., Priyan, T., & Rajalakshmi, S. (2023). Smart Walking Cane for Navigation of Visually Impaired. 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), 1–4. https://doi.org/10.1109/ICCEBS58601.2023.10448603 DOI: https://doi.org/10.1109/ICCEBS58601.2023.10448603

Romeo, N. K., Rajbanshi, S., Lukama, W., Kaur, M., Rakesh, N., & Goyal, M. K. (2022). Design a Smart Cane for Visually Impaired Individuals’ Assistance. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP), 295–296. https://doi.org/10.1109/ICFIRTP56122.2022.10063212 DOI: https://doi.org/10.1109/ICFIRTP56122.2022.10063212

Song, H., Panda, S., Hajra, S., Hwang, S., Jo, J., Kim, N., Panigrahi, B. K., Yu, J., Jeong, S. M., & Kim, H. J. (2024). A Self-Powered Smart White Cane for Improving Mobility of Visually Impaired Person Using a Triboelectric Nanogenerator. Energy Technology, 12(7), 2400424. https://doi.org/10.1002/ente.202400424 DOI: https://doi.org/10.1002/ente.202400424

Trujillo Mora, V., González Jaimes, E. I., López Chau, A., & Bautista López, J. (2021). Analysis of the usefulness of the UAEM Smart White Cane for people with visual impairment. RIDE. Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 11(22). https://doi.org/10.23913/ride.v11i22.897 DOI: https://doi.org/10.23913/ride.v11i22.897

Ulfa, A., Rosspertiwi, A. A., Sahroni, A., & Murnani, S. (2023). S-Cane: Ultrasonic Sensor-Based Smart Cane for the Visually Impaired. 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 7–11. https://doi.org/10.1109/IBITeC59006.2023.10390939 DOI: https://doi.org/10.1109/IBITeC59006.2023.10390939

Venkatraman, S., Subramanian, K., Tolia, C., & Shanbhag, R. (2020). Smart Cane-An Aid for the Visually Challenged. In J. S. Raj, A. Bashar, & S. R. J. Ramson (Eds.), Innovative Data Communication Technologies and Application (pp. 692–701). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-38040-3_79

Vineeth, I., Sharan, Y. H. V. S., Karthik, Y., & Priya, B. K. (2021). Smart Cane for Visually Impaired Person. 2021 International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT51480.2021.9498563 DOI: https://doi.org/10.1109/CONIT51480.2021.9498563

Yam, B., & Elshakankiri, M. (2024). The Design of Smart Cane SC+. In A. K. Nagar, D. S. Jat, D. Mishra, & A. Joshi (Eds.), Intelligent Sustainable Systems (pp. 461–470). Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-8031-4_40

Yauri, R., Alvarez, K., Cotaquispe, J., Ynquilla, J., & Llerena, O. (2024). Guidance device for visually impaired people based on ultrasonic signals and open hardware. International Journal of Reconfigurable and Embedded Systems, 13(3), 520–527. https://doi.org/10.11591/ijres.v13.i3.pp520-527 DOI: https://doi.org/10.11591/ijres.v13.i3.pp520-527

Zaidi, S. F. N., Shukla, V. K., Gupta, S., & Preetha, V. K. (2023). Enhancing Access of the Visually Impaired Through the Smart Cane. In S. Vyas, A. Upadhyaya, D. Bhargava, & V. K. Shukla (Eds.), Edge-AI in Healthcare: Trends and Future Perspectives (pp. 65–78). CRC Press. https://doi.org/10.1201/9781003244592-5 DOI: https://doi.org/10.1201/9781003244592-5

Downloads

Published

2025-01-20

How to Cite

Gonzales-Saavedra, H., Garcia-Hurtado, K., Gallegos-Pinedo, C., Tenazoa-Bardales, R., Ordinola-Sinarahua, A., Hilario-Putpaña, D., & Diaz-Delgado, D. (2025). Inclusive innovation: Implementation of low-cost proximity sensors for canes. Revista Científica De Sistemas E Informática, 5(1), e838. https://doi.org/10.51252/rcsi.v5i1.838