Water quality and phytoplankton dynamic in an island lagoon of the Lake Maracaibo estuary, Venezuela
DOI:
https://doi.org/10.51252/reacae.v3i2.699Keywords:
biomass, composition, diversity index, nutrients, spatiotemporal variationAbstract
The Las Tabletas lagoon located on the island of Toas in the estuarine system of Lake Maracaibo, Venezuela is a refuge environment for a great diversity of biota that has been subjected to anthropogenic influence, affecting the physicochemical and biological characteristics of its waters. In this work, the spatiotemporal variability of water quality and phytoplankton dynamic are described as key factors to understand the ecological dynamics of this significant body of water. To this end, water samples were collected and analyzed at six sampling stations (E-1 to E-6) for six months. The results indicate that the diversity of phytoplankton community (0.92‒3.59 bits/ind) was influenced by variations in depth, transparency, dissolved oxygen, total Kjeldahl nitrogen (TKN) and total phosphorus (P-total) from the spatial perspective (with higher values in E-5), while transparency, temperature, pH, electrical conductivity, salinity, organic matter and TKN determined the temporal dynamics of the biomass (1.5‒7.3 mg/m3) and abundance (0.20x104‒3.72x104 cells/mL) (with higher levels in December and April, respectively). A low abundance was observed with the following order in the identified divisions: Bacillariophyta >> Cyanophyta > Chlorophyta. The lagoon presents a trophic condition from mesotrophic to eutrophic, according to the levels of P-total, chlorophyll a and phytoplankton abundance.
Downloads
References
Aboal, M., Barcia, E. B., Infante, A. P., & Rodríguez, R. F. (2012). Id-Tax. Catálogo y claves de identi_ cación de organismos fitotoplanctónicos utilizados como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente.
Almanza, V., Parra, O., De M. Bicudo, C. E., González, M. A., Lopez, M., & Urrutia, R. (2016). Floraciones de fitoplancton y variación de la estructura comunitaria fitoplanctónica en tres lagos someros eutróficos de Chile Central. Gayana. Botánica, 73(2), 191–205. https://doi.org/10.4067/S0717-66432016000200191
Anagnostidis, K., & Komarek, J. (1990). Modern approach to the classification system of Cyanophytes. 5 - Stigonematales. Archiv Für Hydrobiologie-Supplements, 86(59). https://www.schweizerbart.de/papers/algol_stud/detail/59/66327/
Bérard-Therriault, L., Poulin, M., & Bossé, L. (1999). Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires. Canadian Science Publishing.
Bonilla, S., & O’Farrell, I. (2023). La importancia de usar el biovolumen en estudios de fitoplancton y monitoreo ambiental de cianobacterias. Ecología Austral, 33(2), 558–566. https://doi.org/10.25260/EA.23.33.2.0.2148
Briceño, H., Buonocore, R., Sangronis, C., García-Pinto, L., Rojas, J., Chirinos, J., González, A., & López, C. (2009). Composición y abundancia del plancton de la Costa Noreste de la Bahía El Tablazo, Sistema de Maracaibo, Venezuela. Boletín Del Centro de Investigaciones Biológicas, 43(4), 463–485. https://produccioncientificaluz.org/index.php/boletin/article/view/3984
Bukaveckas, P. A. (2022). Carbon dynamics at the river–estuarine transition: a comparison among tributaries of Chesapeake Bay. Biogeosciences, 19(17), 4209–4226. https://doi.org/10.5194/bg-19-4209-2022
Cardinale, B. J., Hillebrand, H., Harpole, W. S., Gross, K., & Ptacnik, R. (2009). Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecology Letters, 12(6), 475–487. https://doi.org/10.1111/j.1461-0248.2009.01317.x
Cisternas, M., Torres, L., Urrutia, R., Araneda, A., & Parra, O. (2000). Comparación ambiental, mediante registros sedimentarios, entre las condiciones prehispánicas y actuales de un sistema lacustre. Revista Chilena de Historia Natural, 73(1). https://doi.org/10.4067/S0716-078X2000000100014
Cony, N. L., Ferrer, N. C., & Cáceres, E. J. (2014). Evolución Del Estado Trófico Y Estructura Del Fitoplancton De Un Lago Somero De La Región Pampeana: Lagauna Sauce Grande (Pcia. de Buenos Aires, Argentina). Biología Acuática, 30, 79–91. https://digital.cic.gba.gob.ar/handle/11746/4168
Crisóstomo-Vázquez, L., Alcocer-Morales, C., Lozano-Ramírez, C., & Rodríguez- Palacio, M. C. (2016). Fitoplancton de la laguna del Carpintero, Tampico, Tamaulipas, México. Interciencia, 41(2), 103–109. https://www.redalyc.org/articulo.oa?id=33944255005
De la Lanza, G., Alcocer, J., Moreno, J., & Hernández, S. (2008). Análisis químico-biológico para determinar el estatus trófico de la laguna de Tres Palos Guerrero, México. Hidrobiológica, 18(1), 21–30. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972008000100003
Dillard, G. E. (1999). Common Freshwater Algae of the United States (1st ed.). Science Publishers.
Domingues, R. B., Nogueira, P., & Barbosa, A. B. (2023). Co-Limitation of Phytoplankton by N and P in a Shallow Coastal Lagoon (Ria Formosa): Implications for Eutrophication Evaluation. Estuaries and Coasts, 46(6), 1557–1572. https://doi.org/10.1007/s12237-023-01230-w
Erostate, M., Ghiotti, S., Huneau, F., Jouffroy, D., Garel, E., Garrido, M., & Pasqualini, V. (2022). The challenge of assessing the proper functioning conditions of coastal lagoons to improve their future management. Science of The Total Environment, 803, 150052. https://doi.org/10.1016/j.scitotenv.2021.150052
Esconusted. (2023). LUZ explica por qué se produjo la cianobacteria en el Lago de Maracaibo y alerta que causa enfermedades hepatotóxicas. Gobernación Del Zulia. https://esconusted.com/luz-explica-por-que-se-produjo-la-cianobacteria-en-el-lago-de-maracaibo-y-alerta-que-causa-enfermedades-hepatotoxicas/
Espinal, T., Sedeño, J., & López, E. (2013). Evaluación de la calidad del agua en la laguna de Yuriria, Guanajuato, México, mediante técnicas multivariadas: un análisis de valoración para dos épocas 2005, 2009-2010. Revista Internacional de Contaminación Ambiental, 29(3), 147–163. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/34103
Fernández, A., Marín, J. C., Corona, Á., Flores, J., González, I., & Perozo, R. (2017). Evolución en la morfología de la laguna Las Peonías: 1979‒2016. Revista de La Universidad Del Zulia, 8(21), 41–59. https://produccioncientificaluz.org/index.php/rluz/article/view/29891
Flander-Putrle, V., Francé, J., & Mozetič, P. (2021). Phytoplankton Pigments Reveal Size Structure and Interannual Variability of the Coastal Phytoplankton Community (Adriatic Sea). Water, 14(1), 23. https://doi.org/10.3390/w14010023
García de Emiliani, M. O., & Anselmi de Manavella, M. I. (1989). Fitoplancton y variables ambientales en la cuenca del Río Saladillo (Santa Fe, Argentina) (49; 4).
González de Infante, A. (1988). El plancton de las aguas continentales (p. 130). Secretaría General de la Organización de los Estados Americanos. http://sibucv.ucv.ve/cgi-bin/koha/opac-detail.pl?biblionumber=207651
González, M., Aldana, G., & Saules, L. (2012). Ciclos de marea y condiciones climáticas sobre la variación del nitrógeno en la laguna Las Peonías. Boletín Del Centro de Investigaciones Biológicas, 46(2), 137–157. https://produccioncientificaluz.org/index.php/boletin
Herrera-Silveira, J. a. (2006). Lagunas costeras de Yucatán ( SE, México ): investigación, diagnóstico y manejo. Ecotropicos, 19(2), 94–108.
Izaguirre, I., & Vinocur, A. (1994). Typology of shallow lakes of the Salado River basin (Argentina), based on phytoplankton communities. Hydrobiologia, 277(1), 49–62. https://doi.org/10.1007/BF00023985
Kennish, M. J., & Paerl, H. W. (2010). Coastal Lagoons (1st ed.). CRC Press.
Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota: 1. Teil Chroococcales (pp. 1–548). Süßwasserflora von Mitteleuropa. https://www.algaebase.org/search/bibliography/detail/?biblio_id=24346
Ligorini, V., Malet, N., Garrido, M., Derolez, V., Amand, M., Bec, B., Cecchi, P., & Pasqualini, V. (2022). Phytoplankton dynamics and bloom events in oligotrophic Mediterranean lagoons: seasonal patterns but hazardous trends. Hydrobiologia, 849(10), 2353–2375. https://doi.org/10.1007/s10750-022-04874-0
Lobo, E., Callegaro, V. L., & Bender, E. (2002). Utilização de algas diatomáceas epilíticas como indicadores da qualidade da agua em rios e arroios da região hidrográfica do Guaíba, RS, Brasil (1st ed.). EDUNISC.
López, J. (1985). Manual de ecología. Editorial Trillas.
Maldonado Patiño, D. K. (2018). Determinación del estado trófico de la Laguna de San Miguel Almaya. Capulhuac, Estado de México [Universidad Autónoma del Estado de México]. http://hdl.handle.net/20.500.11799/95338
Marín-Leal, J., Carrasquero-Ferrer, C., Pire-Sierra, M., & Behling de Calmón, E. (2017). Ecotoxicology in Latin America (C. Araújo & C. Shinn (eds.)). Ecotoxicology in Latin America.
Marín, J., Méndez, M., Urdaneta, G., & Fernández, A. (2023). Trophic status and limiting nutrient of primary production in a tropical shallow lagoon. Rev. Amaz. Cienc. Ambient. Ecol, 2(2), 502. https://doi.org/10.51252/reacae.v2i2.e502
Marin, J., Moreno, O., Bastidas, E., Corona, Á., & Fernández, A. (2023). Estimación de resiliencia ecológica en la laguna Las Peonías (Venezuela) mediante análisis integrado (GIS-LiDAR). Boletín de Investigaciones Marinas y Costeras, 52(2), 103–124. https://doi.org/10.25268/bimc.invemar.2023.52.2.1213
Medina, E., & Barboza, F. (2006). Lagunas costeras del Lago de Maracaibo: distribución, estatus y perspectivas de conservación. Ecotrópicos, 19(2), 128–139. http://www.saber.ula.ve/bitstream/handle/123456789/25593/articulo5.pdf?sequence=1&isAllowed=y
MELCCFP. (2024). Quebec Volunteer Lake-Monitoring Program. Ministère de l’Environnement, de la Lutte contre les Changements Climatiques, de la Faune et des Parcs. https://www.environnement.gouv.qc.ca/eau/rsvl/methodes-en.htm#haut
Moreno, C. (2001). Métodos para medir la biodiversidad (1st ed.). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).
Nusche, E. A., & Palme, G. (1975). Biologische methoden fur der praxis der Gewasseruntersuchung, Bestimmung des chlorophyll – “a” und phaeopigment-gehaltes in oberflachenwäser (Issue 116, pp. 562–565). GWF-Wässer/Abwässer. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7637005496
Olsen, S., Jeppesen, E., Moss, B., Özkan, K., Beklioğlu, M., Feuchtmayr, H., González Sagrario, M., Wei, L., Larsen, S., Lauridsen, T. S., & Søndergaard, M. (2015). Factors influencing nitrogen processing in lakes: an experimental approach. Freshwater Biology, 60(4), 646–662. https://doi.org/10.1111/fwb.12511
Ouaissa, S., Gómez-Jakobsen, F., Yebra, L., Ferrera, I., Moreno-Ostos, E., Belando, M. D., Ruiz, J. M., & Mercado, J. M. (2023). Phytoplankton dynamics in the Mar Menor, a Mediterranean coastal lagoon strongly impacted by eutrophication. Marine Pollution Bulletin, 192, 115074. https://doi.org/10.1016/j.marpolbul.2023.115074
Pereira-Ibarra, C. J., & López-Monroy, F. (2021). TROPHIC STATUS OF A TROPICAL COASTAL LAGOON IN MARGARITA ISLAND, VENEZUELA. Revista Internacional de Contaminación Ambiental. https://doi.org/10.20937/RICA.54083
Ramírez Restrepo, J. J. (2000). Fitoplancton de Agua Dulce: Bases Ecológicas, Taxonómicas y Sanitarias. Universidad de Antioquia. Colombia.
Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association, American Water Works Association, Water Environment Federation. https://yabesh.ir/wp-content/uploads/2018/02/Standard-Methods-23rd-Perv.pdf
Rodríguez, G. (2008). El sistema de Maracaibo: biologia y ambiente. Universidad de Texas.
Rosa, A., Cravo, A., Jacob, J., & Correia, C. (2022). Water quality of a southwest Iberian coastal lagoon: Spatial and temporal variability. Continental Shelf Research, 245, 104804. https://doi.org/10.1016/j.csr.2022.104804
Saccà, A. (2017). Methods for the estimation of the biovolume of microorganisms: A critical review. Limnology and Oceanography: Methods, 15(4), 337–348. https://doi.org/10.1002/lom3.10162
Santander, E., Herrera, L., & Merino, C. (2003). Fluctuación diaria del fitoplancton en la capa superficial del océano durante la primavera de 1997 en el norte de Chile (20o18S): II. Composición específica y abundancia celular. Revista de Biología Marina y Oceanografía, 38(1), 13–25. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-19572001000200003
Scheffer, M. (2004). Ecology of Shallow Lakes. Springer Netherlands. https://doi.org/10.1007/978-1-4020-3154-0
Sierra Ramírez, C. A. (2011). Calidad del agua. Evaluación y diagnóstico. Universidad de Medellín Colombia. http://hdl.handle.net/11407/2568
Soria, J., Caniego, G., Hernández-Sáez, N., Dominguez-Gomez, J. A., & Erena, M. (2020). Phytoplankton Distribution in Mar Menor Coastal Lagoon (SE Spain) during 2017. Journal of Marine Science and Engineering, 8(8), 600. https://doi.org/10.3390/jmse8080600
Sosa-Avalos, R., Gaxiola-Castro, G., Olivos-Ortiz, A., & Silva-Iñiguez, L. (2013). Nutrientes inorgánicos y producción del fitoplancton en una laguna costera subtropical de México. Revista de Biología Marina y Oceanografía, 48(1), 143–154. https://www.redalyc.org/articulo.oa?id=47926382010
Suárez, C. (2016). Uso y abuso de las lagunas costeras venezolanas. Revista de Investigación, 40(87), 053–086. https://ve.scielo.org/scielo.php?pid=S1010-29142016000100005&script=sci_abstract
Suka, H. (2023). The Effects of Sea Level Rise and Sedimentation on Coastal Lagoon Formation and Dynamics. Journal of Coastal Zone Management, 26(2), 1000555. https://doi.org/10.35248/2473-3350.23.26.555
Tarafdar, L., Kim, J. Y., Srichandan, S., Mohapatra, M., Muduli, P. R., Kumar, A., Mishra, D. R., & Rastogi, G. (2021). Responses of phytoplankton community structure and association to variability in environmental drivers in a tropical coastal lagoon. Science of The Total Environment, 783, 146873. https://doi.org/10.1016/j.scitotenv.2021.146873
Vázquez-Botello, A., Contreras-Espinosa, F., & De La Lanza-Espino, G. Villanueva, S. (2009). Primary production in coastal lagoons. Encyclopedia of Life Support Systems. https://www.eolss.net/sample-chapters/C09/E2-06-03-03.pdf
Viloria, C., Polanco-Marín, D., Mora, R., & Reyes-Lujan, J. (2021). Fitoplancton asociado a un afloramiento de Ruppia marítima en el sistema del Lago de Maracaibo, Venezuela. REDIELUZ, 11(2), 114–121. https://www.produccioncientificaluz.org/index.php/redieluz/article/view/37617
Vincent, F., & Bowler, C. (2020). Diatoms Are Selective Segregators in Global Ocean Planktonic Communities. MSystems, 5(1). https://doi.org/10.1128/msystems.00444-19
Yacubson, S. (1984). ALGAS DEL RIO TUCUCO y AMBIENTES ACUATICOS DE SUS ALREDEDORES ( ESTADO ZULlA , VENEZUELA ). Boletín Del Centro de Investigaciones Biológicas, 16, 19–95. https://produccioncientificaluz.org/index.php/boletin/article/view/4000/3999
Zhan, P., Krokos, G., Gittings, J. A., Raitsos, D. E., Guo, D., Papagiannopoulos, N., & Hoteit, I. (2022). Physical forcing of phytoplankton dynamics in the Al-Wajh lagoon (Red Sea). Limnology and Oceanography Letters, 7(5), 373–384. https://doi.org/10.1002/lol2.10266
Zhan, P., Krokos, G., Langodan, S., Guo, D., Dasari, H., Papadopoulos, V. P., Lermusiaux, P. F. J., Knio, O. M., & Hoteit, I. (2021). Coastal circulation and water transport properties of the Red Sea Project lagoon. Ocean Modelling, 161, 101791. https://doi.org/10.1016/j.ocemod.2021.101791
Zunino, J. (2018). Lagunas someras como ecosistemas centinelas de la variabilidad climática : respuesta de las comunidades fitoplanctónicas [Universidad Nacional del Sur]. http://repositoriodigital.uns.edu.ar/handle/123456789/4391
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alejandra Gonzales, Julio Marín, Roberta Mora, Ever Morales
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Amazónica de Ciencias Ambientales y Ecológicas (REACAE) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the REACAE.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).