Kinetics of heavy metals in leachates from a landfill in Cajamarca, Peru

Authors

  • Persi Vera-Zelada Universidad Nacional de Jaén https://orcid.org/0000-0002-2881-0959
  • Luis Alberto Vera-Zelada Universidad Nacional de Cajamarca
  • Judith Rossmery Minchán-Sapo Universidad Privada Antonio Guillermo Urrelo
  • Marta Isabel Quiliche-Culqui Universidad Privada Antonio Guillermo Urrelo

DOI:

https://doi.org/10.51252/reacae.v2i2.512

Keywords:

anaerobic biodigestion, metals, treatment of leachate

Abstract

This research proposed to determine the kinetics of toxic metals from the leachate from the infrastructure for the treatment and final disposal of solid waste in Cajamarca when it comes into contact with the soil. The study was carried out at the laboratory level; 100 kg of soil and a volume of 60 L of leachate were placed in a 150 L container to generate the contact of both, the experiment lasted 60 days and was sampled every 10 days in the following periods of 0, 10, 20, 30, 40 and 50 days to later be recirculated. The leachate does not contribute contaminants to the soil, the soil behaves with an adsorbent since arsenic, cadmium, chromium, iron, lead and zinc are metals retained or adsorbed in addition, copper and mercury are metals that the ground does not hold. Regarding the kinetics, it was shown that the reaction rate of iron is higher than the others with 0.012 mg/day and an average adequacy of all metals to the pseudo second order model of 99.58%. It is concluded that the toxic metals in the leachate have a low reaction rate in the soil.

Downloads

Download data is not yet available.

References

Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003

Cárdenas-Ferrer, T. M., Santos-Herrero, R. F., Contreras-Moya, A. M., Rosa-Domínguez, E., & Correa-Cortés, Y. (2020). Diseño de una planta para el tratamiento del lixiviado en Vertedero de Sagua La Grande. Tecnología Química, 40(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852020000200413&lng=es&tlng=es

Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z., & Kim, G.-H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil (pp. 131–196). https://doi.org/10.1016/bs.agron.2020.10.001

Dai, J., Ren, F., & Tao, C. (2012). Adsorption Behavior of Fe(II) and Fe(III) Ions on Thiourea Cross-Linked Chitosan with Fe(III) as Template. Molecules, 17(4), 4388–4399. https://doi.org/10.3390/molecules17044388

Jayawardhana, Y., Kumarathilaka, P., Herath, I., & Vithanage, M. (2016). Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate. In Environmental Materials and Waste (pp. 117–148). Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00006-8

Kapelewska, J., Kotowska, U., & Wiśniewska, K. (2016). Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS. Environmental Science and Pollution Research, 23(2), 1642–1652. https://doi.org/10.1007/s11356-015-5359-9

Li, K., Zheng, Z., Huang, X., Zhao, G., Feng, J., & Zhang, J. (2009). Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. Journal of Hazardous Materials, 166(1), 213–220. https://doi.org/10.1016/j.jhazmat.2008.11.007

Meshram, P., Pandey, B. D., & Mankhand, T. R. (2016). Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Management, 51, 196–203. https://doi.org/10.1016/j.wasman.2015.12.018

Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, S2567–S2574. https://doi.org/10.1016/j.arabjc.2013.09.031

Propp, V. R., De Silva, A. O., Spencer, C., Brown, S. J., Catingan, S. D., Smith, J. E., & Roy, J. W. (2021). Organic contaminants of emerging concern in leachate of historic municipal landfills. Environmental Pollution, 276, 116474. https://doi.org/10.1016/j.envpol.2021.116474

PUCP. (2016). ¿Sabías que Perú genera 18 131 toneladas de basura al día? Clima de Cambios PUCP. https://www.pucp.edu.pe/climadecambios/noticias/sabias-que-peru-genera-18-131-toneladas-de-basura-al-dia/#:~:text=“ElPerúestágenerando18,residuossólidosdelINTE–PUCP

Puga, S. (2006). Contaminación por metales pesados en suelo provocada por la industria minera: Heavy metals pollution in soils damaged by mining industry. Ecología Aplicada, 5(1–2), 149–155. http://www.scielo.org.pe/scielo.php?pid=S1726-22162006000100020&script=sci_abstract

Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., Venglovsky, J., Szaboova, T., & Kovacova, S. (2018). Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00042

Wuana, R. A., & Okieimen, F. E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011, 1–20. https://doi.org/10.5402/2011/402647

REACAE

Published

2023-07-10

How to Cite

Vera-Zelada , P., Vera-Zelada, L. A., Minchán-Sapo , J. R., & Quiliche-Culqui, M. I. (2023). Kinetics of heavy metals in leachates from a landfill in Cajamarca, Peru. Revista Amazónica De Ciencias Ambientales Y Ecológicas, 2(2), e512. https://doi.org/10.51252/reacae.v2i2.512

Similar Articles

You may also start an advanced similarity search for this article.