Cloud computing research in computer science and engineering: analyzing output patterns from Scopus

Authors

  • William Joel Marín Rodriguez Universidad Nacional José Faustino Sánchez Carrión https://orcid.org/0000-0002-0861-9663
  • Daniel Cristóbal Andrade Girón Universidad Nacional José Faustino Sánchez Carrión
  • Edgar Tito Susanibar Ramirez Universidad Nacional José Faustino Sánchez Carrión
  • Marcelo Zúñiga Rojas Universidad Nacional José Faustino Sánchez Carrión

DOI:

https://doi.org/10.51252/rcsi.v5i1.908

Keywords:

Artificial intelligence, big data, bibliometrics, cloud computing, Internet of Things, literature review

Abstract

We analyzed the latest trends in open-source research from 2020 to 2024. We used bibliometric techniques such as productivity and author collaboration, productivity and institutional collaboration, and co-occurrence of terms. We used Scopus to collect the sample we analyzed. Regarding the productivity by authors, those who stand out the most have exceeded the threshold of 9 articles in the last five years. Among the organizations, the most productive are the University of the Chinese Academy of Sciences (China), Carnegie Mellon University (United States), Zhejiang University (China), Massachusetts Institute of Technology (MIT, United States), and Stanford University (United States). The co-word analysis revealed five topical clusters: open-source software and artificial intelligence, medical research and scientific methodologies, systematic reviews and health impact studies, simulation, quantum physics and complex systems, and medical and demographic research.

References

Abaee, M., Saeedi, M., & Taherdoost, H. (2024). IoT and cloud computing for sustainable development goals in industry 4.0: A bibliometric analysis. En Reshaping Environmental Science Through Machine Learning and IoT (pp. 98-118). IGI Global. https://doi.org/10.4018/979-8-3693-2351-9.ch006 DOI: https://doi.org/10.4018/979-8-3693-2351-9.ch006

Ampofo, I. A. S., Dapaah, E. O., Oppong-Twum, F., Buabeng, S. M., Badzongoly, E. L. B., Ampofo, I. A. J., ... Sarfo, K. (2024). Application of cloud computing in organizational structure: A concrete analysis of the paradigm using bibliometric data from 1800 to 2022. Lecture Notes in Networks and Systems. https://doi.org/10.1007/978-3-031-62281-6_37 DOI: https://doi.org/10.1007/978-3-031-62281-6_37

Andrade-Girón, D., Marín-Rodriguez, W., Sandivar-Rosas, J., Carreño-Cisneros, E., Susanibar-Ramirez, E., Zuñiga-Rojas, M., Angeles-Morales, J., & Villarreal-Torres, H. (2024). Generative artificial intelligence in higher education learning: A review based on academic databases. Iberoamerican Journal of Science Measurement and Communication, 4(1), 1–16. https://doi.org/10.47909/ijsmc.101 DOI: https://doi.org/10.47909/ijsmc.101

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., ... Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58. https://doi.org/10.1145/1721654.1721672 DOI: https://doi.org/10.1145/1721654.1721672

Ausejo Sánchez, J. L., Soto, F. G. C., Rosa, P. E. R. L., Palma, D. F. M., Campos, G. A. C., & Cadillo, A. J. R. (2024). Big data research in the business, management and accounting field: Revealing the thematic structure based on co-word analysis. Iberoamerican Journal of Science Measurement and Communication, 4(1), 1–8. https://doi.org/10.47909/ijsmc.116 DOI: https://doi.org/10.47909/ijsmc.116

Buyya, R., Broberg, J., & Goscinski, A. (2013). Cloud computing: Principles and paradigms. Wiley.

Cai, Y., Lu, W., Wang, L., & Xing, W. (2015). Cloud computing research analysis using bibliometric method. International Journal of Software Engineering and Knowledge Engineering, 25(3), 551-571. https://doi.org/10.1142/S0218194015400203 DOI: https://doi.org/10.1142/S0218194015400203

Chen, D. (2022). Statistical analysis of green building research hotspots based on bibliometrics big data and cloud computing. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). https://doi.org/10.1109/EEBDA53927.2022.9744885 DOI: https://doi.org/10.1109/EEBDA53927.2022.9744885

Durgut, M., Koruyan, K., & Tarhan, C. (2023). A bibliometric analysis of cloud computing and business intelligence. 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). https://doi.org/10.1109/ISMSIT58785.2023.10304844 DOI: https://doi.org/10.1109/ISMSIT58785.2023.10304844

Dutta, N. (2023). Bibliometrics review of energy optimization based on cloud computing. Proceedings - International Conference on Technological Advancements in Computational Sciences (ICTACS). https://doi.org/10.1109/ICTACS59847.2023.10390054 DOI: https://doi.org/10.1109/ICTACS59847.2023.10390054

Fortiș, T. F., & Fortiș, A. E. (2021). Cloud computing projects: A bibliometric overview. Lecture Notes in Networks and Systems. https://doi.org/10.1007/978-3-030-75078-7_14 DOI: https://doi.org/10.1007/978-3-030-75078-7_14

Garg, Y., Uppal, M., & Gupta, D. (2024). A bibliometric overview of testing in cloud computing environment. Proceedings - International Conference on Computing, Power, and Communication Technologies (IC2PCT). https://doi.org/10.1109/IC2PCT60090.2024.10486536 DOI: https://doi.org/10.1109/IC2PCT60090.2024.10486536

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of "big data" on cloud computing: Review and open research issues. Information Systems, 47, 98-115. https://doi.org/10.1016/j.is.2014.07.006 DOI: https://doi.org/10.1016/j.is.2014.07.006

Jansen, W., & Grance, T. (2011). Guidelines on security and privacy in public cloud computing. National Institute of Standards and Technology (NIST). Special Publication 800-144. DOI: https://doi.org/10.6028/NIST.SP.800-144

Jombo, S., & Abd Elbasit, M. (2023). Bibliometric analysis of cloud computing in agriculture using remote sensing data. 2023 IST-Africa Conference (IST-Africa). https://doi.org/10.23919/IST-Africa60249.2023.10187834 DOI: https://doi.org/10.23919/IST-Africa60249.2023.10187834

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology (NIST). Special Publication 800-145. DOI: https://doi.org/10.6028/NIST.SP.800-145

Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2020). Cloud computing for machine learning and cognitive applications. MIT Press.

Smith, J. E., & Nair, R. (2005). Virtual machines: Versatile platforms for systems and processes. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-155860910-5/50004-5

Wang, J., Antwi-Afari, M. F., Tezel, A., Antwi-Afari, P., & Kasim, T. (2024). Artificial intelligence in cloud computing technology in the construction industry: A bibliometric and systematic review. Journal of Information Technology in Construction, 29, 480-502. https://doi.org/10.36680/j.itcon.2024.022 DOI: https://doi.org/10.36680/j.itcon.2024.022

Wattanasiri, P., Manorom, P., & Chansanam, W. (2024). Influence and collaboration in library and information science research: A university perspective. Iberoamerican Journal of Science Measurement and Communication, 4(3), 1–14. https://doi.org/10.47909/ijsmc.153 DOI: https://doi.org/10.47909/ijsmc.153

Yu, J., Yang, Z., Zhu, S., Xu, B., Li, S., & Zhang, M. (2018). A bibliometric analysis of cloud computing technology research. Proceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). https://doi.org/10.1109/IAEAC.2018.8577750 DOI: https://doi.org/10.1109/IAEAC.2018.8577750

Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629

Downloads

Published

2025-01-20

How to Cite

Marín Rodriguez, W. J., Andrade Girón, D. C., Susanibar Ramirez, E. T., & Zúñiga Rojas, M. (2025). Cloud computing research in computer science and engineering: analyzing output patterns from Scopus. Revista Científica De Sistemas E Informática, 5(1), e908. https://doi.org/10.51252/rcsi.v5i1.908