Design of an autonomous multiparameter buoy with photovoltaic energy and remote communication based on IoT for aquaculture environments

Authors

DOI:

https://doi.org/10.51252/rcsi.v5i1.866

Keywords:

aquaculture 4.0, IoT, environmental monitoring, wireless sensors, sustainable technology

Abstract

A prototype of an autonomous multiparameter buoy was designed to address technological limitations in water quality monitoring in aquaculture environments. The objective was to develop a modular and sustainable system integrating photovoltaic energy and wireless communication to monitor critical parameters in real time: pH, temperature, dissolved oxygen, and electrical conductivity. The system consists of an emitter module, receiver module, and a data transmission platform to the cloud. Materials included reinforced PLA and PETG, and electronic components were powered by a 20 W solar panel connected to a 12 V 7 Ah battery. During testing, the prototype demonstrated a 48-hour energy autonomy and reliable LoRa transmission with a 500 m range in the direct line of sight. The modular design facilitates sensor integration and system adaptation to various conditions, benefiting small producers. However, challenges such as component resilience in harsh environments and optimizing energy autonomy under adverse conditions remain, presenting opportunities for future improvements in robustness and scalability.

References

Araujo, G. S., Silva, J. W. A. da, Cotas, J., & Pereira, L. (2022). Fish Farming Techniques: Current Situation and Trends. Journal of Marine Science and Engineering, 10(11), 1598. https://doi.org/10.3390/jmse10111598 DOI: https://doi.org/10.3390/jmse10111598

Arévalo-Hernández, C. O., Arévalo-Gardini, E., Arévalo-Gardini, J., & Navas-Vásquez, M. E. (2023). Efecto de extractos vegetales en el crecimiento y desarrollo del paiche (Arapaima gigas) en etapa de pre-cría en la región San Martín. Revista Peruana de Investigación Agropecuaria, 2(1), e31. https://doi.org/10.56926/repia.v2i1.31 DOI: https://doi.org/10.56926/repia.v2i1.31

BCRP. (2017). Potencial potencial acuícola en el Perú. https://www.bcrp.gob.pe/docs/Publicaciones/Revista-Moneda/moneda-172/moneda-172-07.pdf

Bennett, M., March, A., & Failler, P. (2024). Blue Economy Financing Solutions for the Fisheries and Aquaculture Sectors of Caribbean Island States. Fishes, 9(8), 305. https://doi.org/10.3390/fishes9080305 DOI: https://doi.org/10.3390/fishes9080305

Biazi, V., & Marques, C. (2023). Industry 4.0-based smart systems in aquaculture: A comprehensive review. Aquacultural Engineering, 103, 102360. https://doi.org/10.1016/j.aquaeng.2023.102360 DOI: https://doi.org/10.1016/j.aquaeng.2023.102360

Bórquez López, R. A., Martinez Cordova, L. R., Gil Nuñez, J. C., Gonzalez Galaviz, J. R., Ibarra Gamez, J. C., & Casillas Hernandez, R. (2020). Implementation and Evaluation of Open-Source Hardware to Monitor Water Quality in Precision Aquaculture. Sensors, 20(21), 6112. https://doi.org/10.3390/s20216112 DOI: https://doi.org/10.3390/s20216112

Bunting, S. W., Bostock, J., Leschen, W., & Little, D. C. (2023). Evaluating the potential of innovations across aquaculture product value chains for poverty alleviation in Bangladesh and India. Frontiers in Aquaculture, 2. https://doi.org/10.3389/faquc.2023.1111266 DOI: https://doi.org/10.3389/faquc.2023.1111266

Chiu, M.-C., Yan, W.-M., Bhat, S. A., & Huang, N.-F. (2022). Development of smart aquaculture farm management system using IoT and AI-based surrogate models. Journal of Agriculture and Food Research, 9, 100357. https://doi.org/10.1016/j.jafr.2022.100357 DOI: https://doi.org/10.1016/j.jafr.2022.100357

Dirección Regional de la Producción de San Martín. (2022). Cultivo y producción de Tilapia alternativa para acuicultores de San Martín. https://www.gob.pe/institucion/regionsanmartin-drp/noticias/631417-cultivo-y-produccion-de-tilapia-alternativa-para-acuicultores-de-san-martin

Dupont, C., Cousin, P., & Dupont, S. (2018). IoT for Aquaculture 4.0 Smart and easy-to-deploy real-time water monitoring with IoT. 2018 Global Internet of Things Summit (GIoTS), 1–5. https://doi.org/10.1109/GIOTS.2018.8534581 DOI: https://doi.org/10.1109/GIOTS.2018.8534581

Engle, C. R., & van Senten, J. (2022). Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes, 7(5), 268. https://doi.org/10.3390/fishes7050268 DOI: https://doi.org/10.3390/fishes7050268

Eze, E., Kirby, S., Attridge, J., & Ajmal, T. (2023). Aquaculture 4.0: hybrid neural network multivariate water quality parameters forecasting model. Scientific Reports, 13(1), 16129. https://doi.org/10.1038/s41598-023-41602-7 DOI: https://doi.org/10.1038/s41598-023-41602-7

FAO. (2024). FAO Report: Global fisheries and aquaculture production reaches a new record high. https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en

Flores Mollo, S., & Aracena Pizarro, D. (2018). Sistema de monitoreo remoto de acuicultura en estanques para la crianza de camarones. Ingeniare. Revista Chilena de Ingeniería, 26, 55–64. https://doi.org/10.4067/S0718-33052018000500055 DOI: https://doi.org/10.4067/S0718-33052018000500055

García-Castro, J., & Ascón-Dionisio, G. (2022). Sistema automatizado de monitoreo de parámetros físico-químicos en producción de alevines Gamitana (Colossoma macropomum). Revista Agrotecnológica Amazónica, 2(1). https://doi.org/10.51252/raa.v2i1.240 DOI: https://doi.org/10.51252/raa.v2i1.240

Garlock, T., Asche, F., Anderson, J., Ceballos-Concha, A., Love, D. C., Osmundsen, T. C., & Pincinato, R. B. M. (2022). Aquaculture: The missing contributor in the food security agenda. Global Food Security, 32, 100620. https://doi.org/10.1016/j.gfs.2022.100620 DOI: https://doi.org/10.1016/j.gfs.2022.100620

Garlock, T. M., Asche, F., Anderson, J. L., Eggert, H., Anderson, T. M., Che, B., Chávez, C. A., Chu, J., Chukwuone, N., Dey, M. M., Fitzsimmons, K., Flores, J., Guillen, J., Kumar, G., Liu, L., Llorente, I., Nguyen, L., Nielsen, R., Pincinato, R. B. M., … Tveteras, R. (2024). Environmental, economic, and social sustainability in aquaculture: the aquaculture performance indicators. Nature Communications, 15(1), 5274. https://doi.org/10.1038/s41467-024-49556-8 DOI: https://doi.org/10.1038/s41467-024-49556-8

Gozzer-Wuest, R., Alonso-Población, E., & Tingley, G. A. (2021). Identifying priority areas for improvement in Peruvian Fisheries. Marine Policy, 129, 104545. https://doi.org/10.1016/j.marpol.2021.104545 DOI: https://doi.org/10.1016/j.marpol.2021.104545

Ismiño-Orbe, R. A., Fernández-Méndez, C., Ramírez-Arrarte, P., Alván -Aguilar, M., & Murrieta-Morey, G. A. (2024). Crecimiento poblacional de Brachionus quadridentatus Hermann, 1783 (Rotífera) aplicando tres dietas. Revista de Veterinaria y Zootecnia Amazónica, 4(2), e868. https://doi.org/10.51252/revza.v4i2.868 DOI: https://doi.org/10.51252/revza.v4i2.868

Laktuka, K., Kalnbalkite, A., Sniega, L., Logins, K., & Lauka, D. (2023). Towards the Sustainable Intensification of Aquaculture: Exploring Possible Ways Forward. Sustainability, 15(24), 16952. https://doi.org/10.3390/su152416952 DOI: https://doi.org/10.3390/su152416952

Lu, H.-Y., Cheng, C.-Y., Cheng, S.-C., Cheng, Y.-H., Lo, W.-C., Jiang, W.-L., Nan, F.-H., Chang, S.-H., & Ubina, N. A. (2022). A Low-Cost AI Buoy System for Monitoring Water Quality at Offshore Aquaculture Cages. Sensors, 22(11), 4078. https://doi.org/10.3390/s22114078 DOI: https://doi.org/10.3390/s22114078

Naylor, R., Fang, S., & Fanzo, J. (2023). A global view of aquaculture policy. Food Policy, 116, 102422. https://doi.org/10.1016/j.foodpol.2023.102422 DOI: https://doi.org/10.1016/j.foodpol.2023.102422

Obiero, K., Meulenbroek, P., Drexler, S., Dagne, A., Akoll, P., Odong, R., Kaunda-Arara, B., & Waidbacher, H. (2019). The Contribution of Fish to Food and Nutrition Security in Eastern Africa: Emerging Trends and Future Outlooks. Sustainability, 11(6), 1636. https://doi.org/10.3390/su11061636 DOI: https://doi.org/10.3390/su11061636

Organización de las Naciones Unidas para el Desarrollo Industrial. (2017). La Cadena de Valor Acuícola Amazónica en Perú. https://rnia.produce.gob.pe/wp-content/uploads/2021/01/PCP-Perú_Diagnostico_Cadena-de-Valor-Acuícola_Informe-Final.pdf

Programa Nacional de Innovación en Pesca y Acuicultura. (2018). Innovación y Futuro de la Acuicultura y Pesca de la Macrorregión nororiental. https://cdn.www.gob.pe/uploads/document/file/3891493/Macrorregion_Nororiental_TIFAP_compressed.pdf.pdf

Quesquén-Fernández, R. O., Gutiérrez-Romero, G. A., Haeeun, J., Cabrera-Simon, A. E., & Samaniego-Pipo, L. S. (2022). Estado actual de la acuicultura de la Selva Peruana: caso Ucayali. Journal of the Selva Andina Animal Science, 9(2), 49–63. https://doi.org/10.36610/j.jsaas.2022.090200049 DOI: https://doi.org/10.36610/j.jsaas.2022.090200049

Reyes-Bedriñana, M. R., Mathios-Flores, M. A., Aguilar-Vásquez, J. V., Uesta-Hidalgo, O. A., Tuesta-Hidalgo, J. C., & Napuchi-Linares, J. (2022). Evaluación de densidades de cultivo de alevinos de gamitana (Colossoma Macropomum) bajo sistema RAS en la Amazonía Peruana. Revista Peruana de Investigación Agropecuaria, 1(1), e8. https://doi.org/10.56926/repia.v1i1.8 DOI: https://doi.org/10.56926/repia.v1i1.8

Rowan, N. J. (2023). The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain – Quo Vadis? Aquaculture and Fisheries, 8(4), 365–374. https://doi.org/10.1016/j.aaf.2022.06.003 DOI: https://doi.org/10.1016/j.aaf.2022.06.003

Sánchez Calle, J. E., Valles Coral, M. Á., & Gonzales Sánchez, P. A. (2021). Políticas promovedoras de la tecnificación y su efecto en la productividad acuícola. Ciencia & Tecnología Agropecuaria, 22(3), e2100. https://doi.org/10.21930/rcta.vol22_num3_art:2100 DOI: https://doi.org/10.21930/rcta.vol22_num3_art:2100

Sociedad Nacional de Pesquería. (2020). Acuicultura: Proceso, potencial y retos para su desarrollo. https://snp.org.pe/industria-pesquera/acuicultura/

Sotelo-Lescano, L. O., Campos-Baca, L. E., Del-Águila-Chávez, J., & Casado-del-Castillo, S. P. (2024). Biología reproductiva de Hypophthalmus edentatus (Pimelodidae) y Brycon amazonicus (Bryconidae) en la cuenca del Putumayo, región Loreto, Perú. Revista Peruana de Investigación Agropecuaria, 3(2), e71. https://doi.org/10.56926/repia.v3i2.71 DOI: https://doi.org/10.56926/repia.v3i2.71

Staude, M., Brożek, P., Kostecka, E., Tarnapowicz, D., & Wysocki, J. (2024). Remote Water Quality Monitoring System for Use in Fairway Applications. Applied Sciences, 14(23), 11406. https://doi.org/10.3390/app142311406 DOI: https://doi.org/10.3390/app142311406

Von Borstel Luna, F. D., de la Rosa Aguilar, E., Suarez Naranjo, J., & Gutierrez Jaguey, J. (2017). Robotic System for Automation of Water Quality Monitoring and Feeding in Aquaculture Shadehouse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 1575–1589. https://doi.org/10.1109/TSMC.2016.2635649 DOI: https://doi.org/10.1109/TSMC.2016.2635649

Wong, A., Frommel, A. Y., Sumaila, U. R., & Cheung, W. W. L. (2024). A traits-based approach to assess aquaculture’s contributions to food, climate change, and biodiversity goals. Npj Ocean Sustainability, 3(1), 30. https://doi.org/10.1038/s44183-024-00065-7 DOI: https://doi.org/10.1038/s44183-024-00065-7

Zhang, S., Tian, C., & Zhou, F. (2022). Ocean observation system design of mooring buoy and benthic node with electro-optical-mechanical cable. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1018751 DOI: https://doi.org/10.3389/fmars.2022.1018751

Downloads

Published

2025-01-20

How to Cite

Lévano-Rodriguez, D., Gonzales-Garay, J. H., Lévano-Casildo, M., & López-Gonzales, J. L. (2025). Design of an autonomous multiparameter buoy with photovoltaic energy and remote communication based on IoT for aquaculture environments. Revista Científica De Sistemas E Informática, 5(1), e866. https://doi.org/10.51252/rcsi.v5i1.866

Most read articles by the same author(s)