Determinación de la DL50 de Metanosulfonato de Etilo (EMS) para la inducción de cambios morfológicos y fisiológicos en plántulas de Plukenetia volubilis

Autores/as

  • Mike Corazón-Guivin Universidad Nacional de San Martín https://orcid.org/0000-0001-6027-4255
  • Manuel Arévalo-Rojas Universidad Nacional de Barranca https://orcid.org/0000-0003-0230-3403
  • Ronny Acosta-Córdoba Universidad Nacional de San Martín
  • Jorge Valverde-Iparraguirre Universidad Nacional de San Martín
  • María Ruiz-Sánchez Universidad Nacional de San Martín https://orcid.org/0000-0002-9933-9017
  • Agustín Cerna-Mendoza Universidad Nacional de San Martín
  • Juan Guerrero-Abad Instituto Nacional de Innovación Agraria
  • Danny Chirinos-Hinojosa Universidad Nacional de San Martín

DOI:

https://doi.org/10.51252/raa.v2i1.209

Palabras clave:

alteraciones fenotípicas, dosis letal, ethyl methanesulphonate, mutaciones

Resumen

El uso de mutágenos químicos es una herramienta muy utilizada para la generación de nuevas variantes genéticas en diversos cultivos agrícolas. Se evaluó el uso Ethyl Methanesulphonate (EMS) en semillas de Plukenetia volubilis L. para determinar la concentración óptima de EMS que redujera la germinación y/o emergencia de las semillas hasta un 50.0%, y evaluar las alteraciones morfológicas y fisiológicas en plántulas de P. volubilis durante la primera generación. Se empleó un DCA simple con diferentes dosis (0.0%, 0.5%, 1.0%, 1.5%, 2.0% y 3.0%) de EMS en un solo tiempo de exposición (30 hrs.), más un control absoluto (semillas sin tratamiento), para evaluar la sensibilidad mutagénica de P. volubilis L.., considerando parámetros como porcentaje de emergencia, altura de planta, pérdida de dominancia apical, clorosis y deformación de las hojas. Los resultados mostraron que la dosis de 3.0% de EMS con 30 hrs. de exposición, redujo hasta un 50.0% la emergencia de plántulas, valor considerado como la dosis letal media (DL50) para P. volubilis. Así mismo, se evidenciaron alteraciones fenotípicas como deformación de hojas, clorosis, disminución de la altura y pérdida de dominancia apical con el incremento de dosis de EMS. Estos resultados demuestran el potencial del EMS para ser utilizados en semillas de sacha inchi con el objetivo de generar nuevas variantes genética de esta especie.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alcantara, T. P., Bosland, P. W., Smith, D. W. (1996). Ethyl Methane sulfonate Induced Seed Mutagenesis of Capsicum annuum. Journal of Heredity, 239–241. https://doi.org/10.1093/oxfordjournals.jhered.a022992

Ananthaswamy, H. N., U. K. Vakil, and A. Sreenivasan. (1971). Biochemical and physiological changes in gamma irradiated wheat during germination. Radiation Botany,11, 1–12. https://doi.org/10.1016/S0033-7560(71)91257-9

Arisha, M. H., Liang, B. K., Muhammad Shah, S. N., Gong, Z. H., & Li, D. W. (2014). Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate. Genetics and Molecular Research, 13(4), 10049–10061. https://doi.org/10.4238/2014.November.28.9

Arisha, M. H., Shah, S. N., Gong, Z. H., Jing, H., Li, C., and Zhang, H. X. (2015). Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Frontiers in plant science, 6, 399. https://doi.org/10.3389/fpls.2015.00399

Ashok Kumar, V., Kumari R. U, Amutha, R., Siva Kumar, T, Juliet Hepziba S., Ananda Kumar C. (2009). Effect of chemical mutagen on expression of characters in arid legume pulse–cowpea (Vigna unguiculata (L.) Walp.). Research Journal of Agriculture and Biological Sciences 5, 1115–1120.

Bahar B and Akkaya MS. (2009). Effects of EMS treatment on the seed germination in wheat. J. Appl. Biol. Sci, 3, 59-64. http://www.jabsonline.org/index.php/jabs/article/view/133

Bayer, M. (2020). Plant Embryogenesis: Methods and Protocols. Plant Embryogenesis. https://doi.org/10.1007/978-1-0716-0342-0

Benjavad Talebi, A., Benjavad Talebi, A. and Shahrokhifar, B. (2012). Ethyl Methane Sulphonate (EMS) Induced Mutagenesis in Malaysian Rice (cv. MR219) for Lethal Dose Determination. American Journal of Plant Sciences, 3,1661-1665. http://dx.doi.org/10.4236/ajps.2012.312202

Berenschot, A. S., Zucchi, M. I., Tulmann-Neto, A. and Vera Quecini. (2008). Mutagenesis in Petunia x hybrida Vilm. and isolation of a novel morphological mutant. Braz. J. Plant Physiol. 20(2), 95-103. https://doi.org/10.1590/S1677-04202008000200002

Bhat, T. A., A. H. Khan, and S. Praveen. (2007). Spectrum and frequency of chlorophyll mutation induced by MMS, gamma rays and their combination in two varieties of Vicia faba L. Asian Journal of Plant Science, 6, 558–61.

https://scialert.net/abstract/?doi=ajps.2007.558.561

Bhat T. M., Ansari M. Y. K., Aslam, R. (2012). Sodium azide (NaN3) induced genetic variation of Psoralea corylifolia L. and analysis of variants using RAPD markers. Nucleus, 55(3),149–154. https://doi.org/10.1007/s13237-012-0069-x

Borovsky, Y., Tadmor, Y., Bar, E., Meir, A. (2013). Induced mutation in β-carotene hydroxylase results in accumulation of β-carotene and conversion of red to orange color in pepper fruits. Theor Appl. Genet, 126, 557-565. https://doi.org/10.1007/s00122-012-2001-9

Chaudhari, A. K., Verma, S. and Chaudhary, B. R. (2015). Ethyl Methanesulphonate and Sodium Azide Effects on Seedling Growth and Chlorophyll Mutations in Psoralea corylifolia IC 111228. Journal of Crop Improvement, 29(5), 602-618. https://doi.org/10.1080/15427528.2015.1070391

Dhakshanamoorthy, D., Selvaraj, R., Chidambaram, A. (2010). Physical and chemical mutagenesis in Jatropha curcas L. to induce variability in seed germination, growth and yield traits. Plant Biology, 17, 113–125.

Dhamayanthi, K., and Reddy., V. (2000). Cytogenetic effects of gamma rays and ethyl methane sulphonate in chilli pepper (Capsicum annuum L.). Cytologia. China, 65, 129-133. https://doi.org/10.1508/cytologia.65.129

Deepalakshmi, A. J. and Anandakumar, C. R. (2004). Creation of genetic variability for different polygenic traits in black gram (Vigna mungo L. Hepper) through induced mutagenesis. Legume Res, 27, 188-192. https://worldveg.tind.io/record/33371

Devi, S. A. and Mullainathan, L. (2011). Physical and chemical mutagenesis for improvement of chili (Capsicum annuum L.). World Appl. Sci. J, 15, 108-113. https://www.idosi.org/wasj/wasj15(1)11/16.pdf

Devi, SA. & Selvakumar, G. (2013). Chemical mutagens induced alterations in chlorophyll mutants and flower development of chilli (Capsicum annuum L.). Int. J. Mod. Agric, 2, 39-42. https://doi.org/10.17762/ijma.v2i1.13

Emrani, S. N., Arzani, A., Saeidi, G. (2011). Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. African Journal of Biotechnology, 10(59), 12602-12613. https://doi.org/10.5897/AJB11.329

Mohd Rafiq Wani; Samiullah Khan; Mohammad Imran Kozgar (2011). Induced chlorophyll mutations. I. Mutagenic effectiveness and efficiency of EMS, HZ and SA in mungbean. Frontiers of Agriculture in China , 5(4), 514–518. https://doi.org/10.1007/s11703-011-1126-y

Fridborg, I., Kuusk, S., Moritz, T., and Sundberg, E. (1999).TheArabidopsis dwarf mutant shiexhibits reduced gibberellinresponsesconferred byoverexpression of a new putative zinc finger protein. Plant Cell, 11, 1019–1031. https://doi.org/10.2307/3870795

Greene, E. A., Codomo C. A., Taylor, N. E., Henikoff, J. G., Till, B. J., Reynolds, S. H., Enns, L. C., Burtner, C., Johnson, J. E., Odden, A. R., Comai, L., Henikoff, S. (2003). Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics, 164(2), 731–740

Girija, M. and Dhanavel, D. (2009). Mutagenic Effectiveness and Efficiency of Gamma Rays Ethyl Methane Sulphonate and Their Combined Treatments in Cowpea (Vigna unguiculata L. Walp). Global Journal of Molecular Sciences, 4(2). 68-75. https://www.idosi.org/gjms/gjms4(2)/4.pdf

Hadebe, S. T., Modi, A. T., and Shimelis, H. A., (2017). Determination of optimum ethylmethanesulfonate conditions for chemical mutagenesis of selected vernonia (Centrapalus pauciflorus) accessions. South African Journal of Plant and Soil, 34(4),1–7. https://doi.org/10.1080/02571862.2017.1317851

Hohmann, U., Jacobs, G., Jung, C.,(2005). An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant breeding, 124, 317–321. https://doi.org/10.1111/j.1439-0523.2005.01126.x

ISTA, 2003. International Rules for Seed Testing. International Seed Testing Association, Basserdorf.

Jabeen, N. and Mirza, M. (2004). Ethyl Methane Sulfonate Induces Morphological Mutations in Capsicum annuum. Int. J. Agri. Biol, 6(2).

Kadhim, S. M., Mohammed, M. T., Ahmed, O. M., Jassimand, A. M. N. (2016). Study of Some Salvia Officinalis L.(Sage) Components and Effect of Their Aqueous Extract on Antioxidant. Int. J. Chem. Sci, 14(2), 711-719.

Kanakamanay, M. (2008). Induction of genetic variability in kacholam, Kaempferia galanga L. Plant Mutation Reports, 2, 4–6. https://inis.iaea.org/search/search.aspx?orig_q=RN:40018449

Ke, C., Guan, W., Bu, S., Li, X., Deng, Y., Wei, Z., Wu, W. and Zheng, Y. (2019) Determination of absorption dose in chemical mutagenesis in plants. PLoS ONE, 14(1), e0210596. https://doi.org/10.1371/journal.pone.0210596

Krupa-Małkiewicz, M., A. Kosatka, B., Smolik and M. Sędzik. (2017). Induced mutations through EMS treatment and In vitro screening for salt tolerance plant of Petunia x atkinsiana D. Don. Not. Bot. Hort. Agroboil., 45(1), 190-196. https://doi.org/10.15835/nbha45110578

Kodahl N. (2020). Sacha inchi (Plukenetia volubilis L.)-from lost crop of the Incas to part of the solution to global challenges?. Planta, 251(4), 80. https://doi.org/10.1007/s00425-020-03377-3

Kumar, G. and Gupta, P. (2009). Induced karyo-morphological variations in three phenol-deviants of Capsicum annuum L. Turkish Journal of Biology, 33, 123-128.

Kumar, G., Kumar Rai, P. (2007). EMS induced karyomorphological variations in maize (Zea mays L.) inbreds. Turkish Journal of Biology, 31,187–195. https://dergipark.org.tr/tr/pub/tbtkbiology/issue/11719/139938

Kumar, Brajesh, Kumari Smita, Alexis Debut, and Luis Cumbal. (2020). Andean Sacha Inchi (Plukenetia Volubilis L.) Leaf-Mediated Synthesis of Cu2O Nanoparticles: A Low-Cost Approach. Bioengineering, 7(2), 54. https://doi.org/10.3390/bioengineering7020054

Kurobane, I., H. Yamaguchi, C. Sander, and R. A. Nilan. (1979). The effects of gamma irradiation on the production and secretion of enzymes, and on enzyme activities in barley. Seeds. Environmental and Experimental Botany, 19, 75–84. https://inis.iaea.org/search/search.aspx?orig_q=RN:10463093

Larkin, P. J., Scowcroft W. (1981). Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet, 60, 197–214. https://doi.org/10.1007/BF02342540

Lippert, L. F., Bergh, B. O., and Cook, A. A. (1964). Three variegated seedling mutants in the pepper. J. Hered, 55, 7893. https://doi.org/10.1093/oxfordjournals.jhered.a107298

Miller, P. D., Vaughn, K. C., and Wilson K.G., (1984). Ethyl methanesulionate-induced chloroplast mutageneis. Crops J. Hered, 75, 86-92. https://doi.org/10.1093/oxfordjournals.jhered.a109900

Novak, F. J., Brunner, H. (1992). Plant breeding: induced mutation technology for crop improvement. IAEA Bull, 4, 25-33. https://www.iaea.org/sites/default/files/34405682533.pdf

Padma, A, and Reddy, G. M. (1977). Genetic behavior of five induced dwarf mutants in an Indica rice cultivar. Crop Sci, 17, 860-863. https://agris.fao.org/agris-search/search.do?recordID=US19780288412

Prashant Yadav; Meena, H. S., Meena, P.D., Arun Kumar, Riteka Gupta, Jambhulkar, S., Reema Rani and Dhiraj Singh. (2015). Determination of LD50 of ethyl methanesulfonate (EMS) for induction of mutations in rapeseed-mustard. Journal of Oilseed Brassica, 7, (1), 77-82. http://srmr.org.in/ojs/index.php/job/article/view/33

Porch, T. G, Blair, M. W, Lariguet, P., Galeano, C., Pankhurst, C. E, & Broughton, W. J. (2009). Generation of a Mutant Population for TILLING Common Bean Genotype BAT 93. Journal of the American Society for Horticultural Science, 134, 348. https://doi.org/10.21273/JASHS.134.3.348

Saba, N. and Mirza, B. (2002). Ethyl methane sulfonate induced genetic variability in Lycopersicon esculentum. Int J. Agric. Biol, 4, 89-92. http://www.fspublishers.org/published_papers/92737_..pdf

Serrat, X., Esteban, R., Guibourt, N. and Moysset, L. (2014). EMS mutagenesis in mature seed-derived rice calli a s a new method for rapidly obtaining TILLING mutant populations. Plant Met, 10 (1), 5. https://doi.org/10.1186/1746-4811-10-5

Shah, T. M., J. I. Mirza1, M. A. Haq and B.M. Atta. (2008). Induced genetic variability in chickpea (Cicer arietinum L.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Pak. J. Bot., 40(2), 605- 613. http://www.pakbs.org/pjbot/PDFs/40(2)/PJB40(2)605.pdf

Snedecor, G. W., Cochran, W. G., (1967). Statistical Methods (6nd ed.). Iowa State University Press, Ames, IA.

Wang Z. K., Huang Y. X., Miao Z. D., Hu Z. Y., Song X. Z., Liu, L. (2013). Identification and characterization of BGL11 (t), a novel gene regulating leaf-color mutation in rice (Oryza sativa L.).Genes Genomics, 35, 491–499. https://doi.org/10.1007/s13258-013-0094-4

Wang, S., Zhu, F., Kakuda, Y., (2018): Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem, 265, 316-328. https://doi.org/10.1016/j.foodchem.2018.05.055

Webster, G. L. (1994). Classification of the Euphorbiaceae. Ann Mo Bot Gard. 1994;81:3–32.

Wu, Z., Zhang, X., He, B., Diao, L., Sheng, S., Wang, J., Guo, X., Su, N., Wang, L., Jiang, L., Wang, C., Zhai, H., & Wan, J. (2007). A Chlorophyll-Deficient Rice Mutant with Impaired Chlorophyllide Esterification in Chlorophyll Biosynthesis. Plant physiology, 145, 29-40. https://doi.org/10.1104/pp.107.100321

Xu, T., Bian, N., Wen, M., Xiao, J., Yuan, C., Cao, A., Zhang, S., Wang, X. and Wang, H. (2017) Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor. Appl. Genet, 130(3), 483–494. https://doi.org/10.1007/s00122-016-2828-6

Publicado

2022-01-20

Cómo citar

Corazón-Guivin , M., Arévalo-Rojas, M., Acosta-Córdoba, R., Valverde-Iparraguirre, . J., Ruiz-Sánchez, M. ., Cerna-Mendoza, A., … Chirinos-Hinojosa, D. (2022). Determinación de la DL50 de Metanosulfonato de Etilo (EMS) para la inducción de cambios morfológicos y fisiológicos en plántulas de Plukenetia volubilis. Revista Agrotecnológica Amazónica, 2(1), e209. https://doi.org/10.51252/raa.v2i1.209

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.