Effect of irradiated Beauveria bassiana (UV-C) on the control of Spodoptera frugiperda and Cosmopolites sordidus
DOI:
https://doi.org/10.51252/raa.v3i2.541Keywords:
LC50, army camp, entomopathogenic, larvae, UV-CAbstract
The present study aimed to establish the effectiveness of UV-C irradiated Beauveria bassiana strain in controlling adults of Cosmopolites sordidus and third instar larvae of Spodoptera frugiperda. Ten third instar larvae of the fall armyworm and ten adults of the banana weevil were exposed to five concentrations of two strains of Beauveria bassiana, an untreated non-irradiated strain and an experimental strain irradiated with UV-C light for 12 hours (BI12H) at a concentration of 3 x 107, 4 x 107, 5 x 107, 6 x 107, 7 x 107 conidia/ml with 3 replicates each. The results showed entomopathogenic activity for the irradiated strain, where effectiveness was obtained with the median lethal dose LC50 of the pests infected with the entomopathogen and at the effective minimum concentration of 3 x 107 conidia/ml for both strains studied. It was concluded that the irradiated Beauveria bassiana strain has entomopathogenic effect against Cosmopolites sordidus and third instar larvae of Spodoptera frugiperda pests.
Downloads
References
Abagale, S. A., Woodcock, C. M., Chamberlain, K., Osafo-Acquaah, S., van Emden, H., Birkett, M. A., Pickett, J. A., & Braimah, H. (2019). Attractiveness of host banana leaf materials to the banana weevil, Cosmopolites sordidus in Ghana for development of field management strategies. Pest Management Science, 75(2), 549–555. https://doi.org/10.1002/ps.5182
Al-Ubaidy, H. K. S. (2023). Effect of ultraviolet irradiations on growth and development entomopathogenic fungi metarhizium anisopliae to control potato tuber moth. AIP Conference Proceedings, 2475(1), 20008. https://doi.org/10.1063/5.0103391
Alba-Alejandre, I., Alba-Tercedor, J., & Vega, F. E. (2018). Observing the devastating coffee berry borer (Hypothenemus hampei) inside the coffee berry using micro-computed tomography. Scientific Reports, 8(1), 17033. https://doi.org/10.1038/s41598-018-35324-4
Aliaga Fuentes, J. C., & Cruz Gutiérrez, J. S. (2009). Determinación de las CL50 y CL90 del hongo Beauveria bassiana CBLE-265 para el control de las plagas Spodoptera frugiperda y Aphis craccivora. Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/1637
Bastidas, A., Velásquez Salamanca, E., Marín Marín, P., Benavides Machado, P., Bustillo Pardey, A. E., & Orozco C, F. J. (2009). Evaluación de pre formulados de Beauveria bassiana (Bálsamo) vuillemin, para el control de la broca del café. Agronomía, 17(1).
Carballo V, M., Rodriguez, L., & Duran, J. (2001). Evaluación de Beauveria bassiana para el control del picudo del chile en laboratorio. Manejo Integrado de Plagas (Costa Rica) , 62. https://repositorio.catie.ac.cr/bitstream/handle/11554/6257/A2114e.pdf?sequence=1&isAllowed=y
Dassou, A. G., Carval, D., Dépigny, S., Fansi, G., & Tixier, P. (2016). Dataset on the abundance of ants and Cosmopolites sordidus damage in plantain fields with intercropped plants. Data in Brief, 9, 17–23. https://doi.org/10.1016/j.dib.2016.08.027
Dhaliwal, G., Jindal, V., & Dhawan, A. (2010). Insect pest problems and crop losses: changing trends. Indian Journal of Ecology, 37(1), 1–7. https://www.cabdirect.org/cabdirect/abstract/20113091848
Dhawan, M., & Joshi, N. (2017). Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian Journal of Microbiology, 48(3), 522–529. https://doi.org/10.1016/j.bjm.2016.08.004
Fotso Kuate, A., Hanna, R., Doumtsop Fotio, A. R. P., Abang, A. F., Nanga, S. N., Ngatat, S., Tindo, M., Masso, C., Ndemah, R., Suh, C., & Fiaboe, K. K. M. (2019). Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: Case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PLOS ONE, 14(4), e0215749. https://doi.org/10.1371/journal.pone.0215749
Gutiérrez-Cárdenas, O. G., Cortez-Madrigal, H., Malo, E. A., Gómez-Ruíz, J., & Nord, R. (2019). Physiological and pathogenical characterization of beauveria bassiana and metarhizium anisopliae isolates for management of adult spodoptera frugiperda. Southwestern Entomologist, 44(2), 409–421. https://doi.org/10.3958/059.044.0206
Iglesias-Osores, S., & Alcántara-Mimbela, M. (2020). Epidemiología de la roya amarilla del trigo (Puccinia striiformis f. sp. tritici). Manglar, 17(3), 279–280. https://erp.untumbes.edu.pe/revistas/index.php/manglar/article/view/188
Kaur, G., & Padmaja, V. (2009). Relationships among activities of extracellular enzyme production and virulence against Helicoverpa armigera in Beauveria bassiana. Journal of Basic Microbiology, 49(3), 264–274. https://doi.org/10.1002/jobm.200800156
Litsinger, J. A. (2019). A Farming Systems Approach to Insect Pest Management for Upland and Lowland Rice Farmers in Tropical Asia. In Crop Protection Strategies for Subsistence Farmers (pp. 45–101). CRC Press. https://doi.org/10.1201/9780429040894-3
Mallebrera, B., Prosperini, A., Font, G., & Ruiz, M. J. (2018). In vitro mechanisms of Beauvericin toxicity: A review. Food and Chemical Toxicology, 111, (537–545). https://doi.org/10.1016/j.fct.2017.11.019
Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32(11), 177. https://doi.org/10.1007/s11274-016-2131-3
Omukoko, C., Maniania, K., Wesonga, J., Kahangi, E., & Wamocho, L. (2017). Pathogenicity of isolates of Beauveria bassiana to the banana weevil Cosmopolites sordidus. Journal of Agriculture, Science and Technology, 13(2). http://journals.jkuat.ac.ke/index.php/jagst/article/view/597
Ortiz-Urquiza, A., & Keyhani, N. O. (2016). Molecular Genetics of Beauveria bassiana Infection of Insects. Advances in Genetics, 94, 165–249. https://doi.org/10.1016/bs.adgen.2015.11.003
Roy, H. E., & Pell, J. K. (2000). Interactions between entomopathogenic fungi and other natural enemies: Implications for biological control. Biocontrol Science and Technology, 10(6), 737–752. https://doi.org/10.1080/09583150020011708
Smith, R. F., & Calvert, D. J. (2019). Insect Pest Losses and the Dimensions of the World Food Problem. World Food, Pest Losses, and the Environment, (17–38). CRC Press. https://doi.org/10.1201/9780429268076-2
Spurgeon, D. W., & Cooper, W. R. (2012). Disinfestation of beauveria bassiana from adult lygus hesperus 1 using ultraviolet-c radiation. Southwestern Entomologist, 37(4), 449–457. https://doi.org/10.3958/059.037.0402
Svobodova, Z., Burkness, E. C., Skokova Habustova, O., & Hutchison, W. D. (2017). Predator Preference for Bt-Fed Spodoptera frugiperda (Lepidoptera: Noctuidae) Prey: Implications for Insect Resistance Management in Bt Maize Seed Blends. Journal of Economic Entomology, 110(3), 1317–1325. https://doi.org/10.1093/jee/tox098
Valdés-Gutiérrez, S. P., Escobar-López, L. M., Córdoba-Castro, L. A., & Góngora-Botero, C. E. (2011). Efecto de la luz ultravioleta sobre Beauveria bassiana y su virulencia a la broca. Cenicafé, 62(2), 58–68. https://www.cenicafe.org/es/documents/4.pdf
Van Emden, H. F. (2004). Pest and vector control. Cambridge University Press.
Wang, C., & Wang, S. (2017). Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Annual Review of Entomology, 62(1), 73–90. https://doi.org/10.1146/annurev-ento-031616-035509
Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5994–5999. https://doi.org/10.1073/pnas.1703546114
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6), 553–596. https://doi.org/10.1080/09583150701309006
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Stell R. Paico-Marín, Cinthya E. Fernández-Gaitán, Sebastian Iglesias-Osores
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain their rights:
a. The authors retain their trademark and patent rights, as well as any process or procedure described in the article.
b. The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in the Revista Agrotecnológica Amazónica (RAA) (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the RAA.
c. Authors retain the right to make a subsequent publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, number and date).