Effect of pasture height on ruminal ph and milk production in Holstein cows, in a rye grass meadow – cajamarquino ecotype (Lolium multiflorium) and white clover (Trifolium repens)

Authors

DOI:

https://doi.org/10.51252/revza.v3i1.400

Keywords:

rumen fermentation, milk, rumen pH, pasture size

Abstract

It was proposed to determine the effect of pasture height on ruminal pH and milk production in Holstein cows fed on rye grass and white clover pastures, in Cajamarca. Pasture height, ruminal pH and milk production were determined. The cows grazed one week in each height treatment (T1 –low: 12 cm; T2 –medium: 17 cm; T3 –high: 23 cm) and the variables under study were recorded on the last days. A 3 x 3 Latin square was used, with three cows that rotated for three weeks. The treatments significantly affected (P<0.05) the rumen pH, the higher the pasture height, the higher the pH values (4.92; 5.02 and 5.37, respectively). A significant effect of week was observed, increasing significantly as weeks progressed (week 1: 4.87; week 2: 5.17; week 3: 5.28). The hour had a significant effect on the pH, because at the beginning of grazing they had a higher pH than at the end (Hour 1: 5.52; hour 2: 4.69). Finally, milk production was not affected by the applied treatment (low height: 18.25; medium: 18.07; high: 18.18 l/cow/day). It is concluded that the pasture height affected the ruminal pH, but not the milk production.

Downloads

Download data is not yet available.

References

Alothman, M., Hogan, S. A., Hennessy, D., Dillon, P., Kilcawley, K. N., O’Donovan, M., Tobin, J., Fenelon, M. A., & O’Callaghan, T. F. (2019). The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods, 8(8), 350. https://doi.org/10.3390/foods8080350

Arnold, G. W. (2018). Regulation of Forage Intake. In Bioenergetics Of Wild Herbivores (1st ed.). CRC Press.

Barthram, G. T. (1985). Experimental Techniques: The HFRO Sward Stick (1st ed.). Hill Farming Research Organisation.

Cedeño Vera, M. L., & Loor Loor, A. A. (2017). Influencia de la carga instantánea en los indicadores de producción de leche (UDIV) del hato bovino pasto y forraje ESPAM MFL [Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López]. http://repositorio.espam.edu.ec/handle/42000/528

Chen, J., Shen, W., Xu, H., Li, Y., & Luo, T. (2019). The Composition of Nitrogen-Fixing Microorganisms Correlates With Soil Nitrogen Content During Reforestation: A Comparison Between Legume and Non-legume Plantations. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00508

Fariña, S. R., & Chilibroste, P. (2019). Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay. Agricultural Systems, 176, 102631. https://doi.org/10.1016/j.agsy.2019.05.001

Galindo-Blanco, J., Rodríguez-García, I., González-Ibarra, N., García-López, R., & Herrera-Villafranca, M. (2018). Sistema silvopastoril con Tithonia diversifolia (Hemsl.) A. Gray: efecto en la población microbiana ruminal de vacas. Pastos y Forrajes, 41(4), 254–260. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942018000400006

Greenwood, P. L., Paull, D. R., McNally, J., Kalinowski, T., Ebert, D., Little, B., Smith, D. V., Rahman, A., Valencia, P., Ingham, A. B., & Bishop-Hurley, G. J. (2017). Use of sensor-determined behaviours to develop algorithms for pasture intake by individual grazing cattle. Crop and Pasture Science, 68(12), 1091. https://doi.org/10.1071/CP16383

Gutiérrez Arce, F. B. (2011). Efecto de la condición de la pastura sobre el patrón de ingestión, fermentación ruminal y producción de leche de vacas Holando pastoreando una pradera en base a festuca (Festuca arundinacea CV. quantum) de tercer año [Universidad de la República]. http://renati.sunedu.gob.pe/handle/sunedu/1306070

Hanrahan, L., McHugh, N., Hennessy, T., Moran, B., Kearney, R., Wallace, M., & Shalloo, L. (2018). Factors associated with profitability in pasture-based systems of milk production. Journal of Dairy Science, 101(6), 5474–5485. https://doi.org/10.3168/jds.2017-13223

Hennessy, D., Delaby, L., van den Pol-van Dasselaar, A., & Shalloo, L. (2020). Increasing Grazing in Dairy Cow Milk Production Systems in Europe. Sustainability, 12(6), 2443. https://doi.org/10.3390/su12062443

Hernández-Castellano, L. E., Nally, J. E., Lindahl, J., Wanapat, M., Alhidary, I. A., Fangueiro, D., Grace, D., Ratto, M., Bambou, J. C., & de Almeida, A. M. (2019). Dairy science and health in the tropics: challenges and opportunities for the next decades. Tropical Animal Health and Production, 51(5), 1009–1017. https://doi.org/10.1007/s11250-019-01866-6

Ibrahim, N. A., Alimon, A. R., Yaakub, H., Samsudin, A. A., Candyrine, S. C. L., Wan Mohamed, W. N., Md Noh, A., Fuat, M. A., & Mookiah, S. (2021). Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Tropical Animal Health and Production, 53(4), 422. https://doi.org/10.1007/s11250-021-02863-4

INEI. (2012). Censo Nacional Agropecuario (CENAGRO) 2012. Instituto Nacional de Estadística e Informática. https://www.datosabiertos.gob.pe/dataset/censo-nacional-agropecuario-cenagro-2012-instituto-nacional-de-estadística-e-informática

Jameel, Z. M., & Al-Bayati, M. H. R. (2020). Effect of Feeding Panicum (Mombasa) on Flora Microorganisms in Rumen Sheep. Journal of Agricultural, Environmental, 4(1), 1–11. https://doi.org/10.26389/AJSRP.A110120

Johansen, M., Lund, P., & Weisbjerg, M. R. (2018). Feed intake and milk production in dairy cows fed different grass and legume species: a meta-analysis. Animal, 12(1), 66–75. https://doi.org/10.1017/S1751731117001215

Keim, J. P., Daza, J., Beltrán, I., Balocchi, O. A., Pulido, R. G., Sepúlveda-Varas, P., Pacheco, D., & Berthiaume, R. (2020). Milk production responses, rumen fermentation, and blood metabolites of dairy cows fed increasing concentrations of forage rape (Brassica napus ssp. Biennis). Journal of Dairy Science, 103(10), 9054–9066. https://doi.org/10.3168/jds.2020-18785

Li, C., Beauchemin, K. A., & Yang, W. (2020). Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. Journal of Dairy Science, 103(5), 4340–4354. https://doi.org/10.3168/jds.2019-17606

Macdonald, K. A., Penno, J. W., Lancaster, J. A. S., Bryant, A. M., Kidd, J. M., & Roche, J. R. (2017). Production and economic responses to intensification of pasture-based dairy production systems. Journal of Dairy Science, 100(8), 6602–6619. https://doi.org/10.3168/jds.2016-12497

Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants, 9(1), 97. https://doi.org/10.3390/plants9010097

Mattiauda Mele, D. A. (2018). Adaptación de vacas lecheras a estrategias integradas de manejo del pastoreo y suplementación : conducta en pastoreo, fermentación ruminal y producción [Universidad de la República]. https://hdl.handle.net/20.500.12008/29314

Pérez-Ruchel, A., Repetto, J., & Cajarville, C. (2017). Comportamiento ingestivo y ambiente ruminal de ovinos alimentados únicamente con una pastura en estabulación o a pastoreo. Veterinaria (Montevideo), 53(207), 32–38. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-48092017000300044

Ramos-Juárez, J. A., Martínez-Urbina, E., Izquierdo-Reyes, F., Aranda-Ibañez, E. M., Vargas-Villamil, L. M., Hernández-Sánchez, D., & Joaquín-Torres, B. M. (2021). Efecto de Suplementos Fermentados con Pollinaza sobre el consumo y degradación del pasto Cuba CT-115. Revista Fitotecnia Mexicana, 44(4-A), 773. https://doi.org/10.35196/rfm.2021.4-A.773

Rojas Vásquez, Z. (2018). Efecto De La Altura De Pastura Rye Grass - Ecotipo Cajamarquino (Lolium Multiflorium) Y Trebol Blanco (Trifolium Repens) Sobre La Conducta Ingestiva, Ph Ruminal Y Producción Láctea De Vacas Holstein, En El Fundo Tartar, Cajamarca - 2017 [Universidad Nacional de Cajamarca]. http://hdl.handle.net/20.500.14074/2203

Sanches, C., Mousquer, C. J., Andrade Reis, R., Bevitori Kling de Moraes, E. H., Vieira de Araújo, C., Kling de Moraes, A., Maneck Delevatti, L., & Werner Koscheck, J. F. (2015). Associação da altura do pasto e níveis de suplementação para bovinos de corte no período de transição águas-seca. 28° Congresso Brasileiro de Zootecnia. http://www.adaltech.com.br/anais/zootecnia2018/resumos/trab-2279.pdf

Sollenberger, L. E. (2021). Canopy Characteristics, Ingestive Behaviour and Herbage Intake in Cultivated Tropical Grasslands. Actas de Congreso Internacional de Pastizales-UKnowledge. https://uknowledge.uky.edu/

Van Soest, P. J., & Wine, R. H. (1967). Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. Journal of AOAC International, 50(1), 50–55. https://doi.org/10.1093/jaoac/50.1.50

Xia, C., Muhammad, A.-U.-R., Niu, W., Shao, T., Qiu, Q., Su, H., & Cao, B. (2018). Effects of dietary forage to concentrate ratio and wildrye length on nutrient intake, digestibility, plasma metabolites, ruminal fermentation and fecal microflora of male Chinese Holstein calves. Journal of Integrative Agriculture, 17(2), 415–427. https://doi.org/10.1016/S2095-3119(17)61779-9

REVZA

Published

2023-01-20

How to Cite

Rojas-Vásquez, Z., Gutiérrez-Arce, F., & Gutiérrez-Arce, W. (2023). Effect of pasture height on ruminal ph and milk production in Holstein cows, in a rye grass meadow – cajamarquino ecotype (Lolium multiflorium) and white clover (Trifolium repens). Revista De Veterinaria Y Zootecnia Amazónica, 3(1), e400. https://doi.org/10.51252/revza.v3i1.400

Similar Articles

You may also start an advanced similarity search for this article.