Trichoderma spp. as a biocontrol strategy to reduce the incidence of frosty pod rot in cocoa plantations

Authors

  • Karen Beltran-Carguacundo Universidad Estatal de Bolívar
  • Eduardo Rodríguez-Maldonado Universidad Estatal de Bolívar https://orcid.org/0009-0001-4051-9689
  • Katheryne Santamaría-Poveda Universidad Estatal de Bolívar
  • Andrea Román-Ramos Universidad Estatal de Bolívar

DOI:

https://doi.org/10.51252/raa.v6i1.1287

Keywords:

biological control, incidence, pruning, CCN-51

Abstract

Cocoa (Theobroma cacao L.) is a crop of great economic importance in Ecuador, with an average yield of 0.75 t ha⁻¹. However, its production is affected by fungal diseases, particularly frosty pod rot, caused by Moniliophthora roreri, which can cause yield losses of up to 76% in endemic areas. This study evaluated the efficacy of commercial products based on Trichoderma spp. (Trichotic, Tricho Bio WG, and Tricomix) as biological control agents against M. roreri under field conditions, using a randomized complete block design in Los Ríos, Ecuador. Significant differences were recorded in the number and size of lesions, as well as in the area under the disease progress curve of lesion size (ABCDEtl), with Tricomix being the most effective treatment, followed by Trichotic and Tricho Bio WG. Biological control with Tricomix reduced disease incidence by 49% and 66% compared to sanitary pruning and conventional management, respectively. The efficacy is associated with the action mechanisms of Trichoderma spp., including mycoparasitism, antibiosis, competition, and induced resistance. In conclusion, Trichoderma spp. represents a sustainable and effective alternative for the integrated management of frosty pod rot in cocoa, contributing to improved crop productivity and sustainability.

Downloads

Download data is not yet available.

References

Avilés, D., Espinoza, F., Villao, L., Alvarez, J., Sosa, D., Santos-Ordóñez, E., & Galarza, L. (2023). Application of microencapsulated Trichoderma spp. against Moniliophthora roreri during the vegetative development of cocoa. Scientia Agropecuaria, 14(4), 539–547. https://doi.org/10.17268/sci.agropecu.2023.045

Bailey, B. A., Evans, H. C., Phillips‐Mora, W., Ali, S. S., & Meinhardt, L. W. (2018). Moniliophthora roreri , causal agent of cacao frosty pod rot. Molecular Plant Pathology, 19(7), 1580–1594. https://doi.org/10.1111/mpp.12648

Bunbury-Blanchette, A. L., & Walker, A. K. (2019). Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control, 130, 127–135. https://doi.org/10.1016/j.biocontrol.2018.11.007

Di Rienzo, J. A., Balzarini, M., Gonzalez, L., Casanoves, F., & Tablada, M. (2011). Software Estadístico InfoStat (2024 ver.). https://www.infostat.com.ar/

Díaz-Valderrama, J. R., Leiva-Espinoza, S. T., & Aime, M. C. (2020). The History of Cacao and Its Diseases in the Americas. Phytopathology®, 110(10), 1604–1619. https://doi.org/10.1094/PHYTO-05-20-0178-RVW

Evans, H. C. (2016). Frosty Pod Rot (Moniliophthora roreri). In Cacao Diseases (pp. 63–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-24789-2_3

John Seng, J. S. (2014). Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in northeastern Costa Rica. Revista de Biología Tropical, 62(3), 899. https://doi.org/10.15517/rbt.v62i3.14059

Kumar, M., & Ashraf, S. (2017). Role of Trichoderma spp. as a Biocontrol Agent of Fungal Plant Pathogens. In Probiotics and Plant Health (pp. 497–506). Springer Singapore. https://doi.org/10.1007/978-981-10-3473-2_23

Leiva, S., Oliva, M., Hernández, E., Chuquibala, B., Rubio, K., García, F., & Torres de la Cruz, M. (2020). Assessment of the Potential of Trichoderma spp. Strains Native to Bagua (Amazonas, Peru) in the Biocontrol of Frosty Pod Rot (Moniliophthora roreri). Agronomy, 10(9), 1376. https://doi.org/10.3390/agronomy10091376

Leiva, S., Rubio, K., Díaz-Valderrama, J. R., Granda-Santos, M., & Mattos, L. (2022). Phylogenetic Affinity in the Potential Antagonism of Trichoderma spp. against Moniliophthora roreri. Agronomy, 12(9), 2052. https://doi.org/10.3390/agronomy12092052

Marelli, J.-P., Guest, D. I., Bailey, B. A., Evans, H. C., Brown, J. K., Junaid, M., Barreto, R. W., Lisboa, D. O., & Puig, A. S. (2019). Chocolate Under Threat from Old and New Cacao Diseases. Phytopathology®, 109(8), 1331–1343. https://doi.org/10.1094/PHYTO-12-18-0477-RVW

Ploetz, R. (2016). The Impact of Diseases on Cacao Production: A Global Overview. In Cacao Diseases (pp. 33–59). Springer International Publishing. https://doi.org/10.1007/978-3-319-24789-2_2

Reyes-Figueroa, O., Ortiz-García, C. F., Torres-de la Cruz, M., Lagunes-Espinoza, L. del C., & Valdovinos-Ponce, G. (2016). Especies de Trichoderma del agroecosistema cacao con potencial de biocontrol sobre Moniliophthora roreri. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 22(2), 149–163. https://doi.org/10.5154/r.rchscfa.2015.08.036

RStudio. (2021). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

Sarwan, J., Sahani, S., Nair, M. V., Bhargav, S., Kumar, S., Singh, R., Mittal, K., Jaglan, P., Uddin, N., & Bose, K. J. C. (2024). Multiple factors influencing Theobroma cacao and their impact on the chocolate market worldwide. In L. C. García, N. R. Maddela, F. Z. Gavilanes, & C. Aguilar Duarte (Eds.), Sustainable Cacao Cultivation in Latin America. Routledge. https://doi.org/https://doi.org/10.4324/9781003381761

SIPA-MAGP. (2024). Información Productiva Territorial. https://sipa.agricultura.gob.ec/index.php/sipa-estadisticas/tablero-dinamico/cifras-agroproductivas

Solís Hidalgo, Z. K., & Suárez Capello, C. (2004). Uso de Trichoderma spp para control del complejo Moniliasis Escoba de Bruja del cacao en Ecuador. INIAP. http://repositorio.iniap.gob.ec/handle/41000/3368

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329

Varas Carvajal, I. A., Macías Holguín, C. J., Mendoza Thompson, J. U., Cárdenas Briones, D. K., & Bravo Díaz, L. F. (2024). Biocontrol de Moniliophthora roreri con Trichoderma harzianum y Bacillus subtilis en cacao CCN-51. Código Científico Revista de Investigación, 5(E4), 77–92. https://doi.org/10.55813/gaea/ccri/v5/nE4/462

You, J., Zhang, J., Wu, M., Yang, L., Chen, W., & Li, G. (2016). Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 101, 31–38. https://doi.org/10.1016/j.biocontrol.2016.06.006

Published

2026-01-20

How to Cite

Beltran-Carguacundo, K., Rodríguez-Maldonado, E., Santamaría-Poveda, K., & Román-Ramos, A. (2026). Trichoderma spp. as a biocontrol strategy to reduce the incidence of frosty pod rot in cocoa plantations. Revista Agrotecnologica Amazonica, 6(1), e1287. https://doi.org/10.51252/raa.v6i1.1287