Bacillus subtilis as a growth promoter in the cultivation of coffe (Coffea arabica)

Authors

DOI:

https://doi.org/10.51252/reacae.v1i2.345

Keywords:

foliar analysis, sheet count, plots, treatments

Abstract

The study sought to analyze the application of Bacillus subtilis as a growth promoter for coffee (Coffea arabica) in the Soritor district, Moyobamba province, San Martín region. A design of two plots was implemented, T0 was the control plot and in T1 0.18 g of Bacillus subtillus was applied; measurements of the stem and leaf count were made, as well as the foliar and soil analysis in the plots before and three months after the application of the treatment. The Mann Whitney U Test was used to determine if there was a significant difference between T0 and T1. The height and the number of leaves increased by 19.76% and 24.27% compared to T0; obtaining a difference between the averages of plant height of T0 and T1 of 3.7 cm and number of leaves of 2.5 cm. The coffee plants with the application of Bacillus subtilis as a growth promoter registered a greater number of leaves and height compared to T0. Nitrogen in plot T1 decreased from 0.24% to 0.21% in the soil, contrasting with an increase from 3.52% to 3.78% in the foliar analysis due to the solubilizing action of Bacillus subtilis.

Downloads

Download data is not yet available.

References

Anguiano-Cabello, J. C., Flores-Olivas, A. ., Olalde-Portugal, V. ., Arredondo-Valdés, R., & Lared- Alcalá, E. I. (2019). Evaluación de cepas de Bacillus subtilis como promotoras de crecimiento vegetal. Revista bio ciencias, 6, e418. http://revistabiociencias.uan.mx/index.php/BIOCIENCIAS/article/view/418

Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272(1-2), 201-209. https://doi.org/10.1007/s11104-004-5047-x

Arshad, M., & Frankenberger, W. T. (1997). Plant Growth-Regulating Substances in the Rhizosphere: Microbial Production and Functions. Advances in Agronomy, 62, 45-151. https://doi.org/10.1016/S0065-2113(08)60567-2

Ávila Martinez, E. G., Lizarazo Forero, L. M., & Cortéz Pérez, F. (2015). PROMOCIÓN DEL CRECIMIENTO DE Baccharis macrantha (ASTERACEAE) CON BACTERIAS SOLUBILIZADORAS DE FOSFATOS ASOCIADAS A SU RIZOSFERA. Acta Biológica Colombiana, 20(3), 121-131. https://doi.org/10.15446/abc.v20n3.44742

Bashan, Y., De-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant and Soil, e378, 1-33. https://doi.org/10.1007/S11104-013-1956-X/FIGURES/5

Bashan, Y., Holguin, G., & Ferrera Cerrato, R. (1998). Interactions between plants and beneficial microorganisms II. Associative rhizosphere bacteria review. Terra (Mexico), 14(2), 195-210. https://agris.fao.org/agris-search/search.do?recordID=MX1998A01132

Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. https://doi.org/10.1016/J.TPLANTS.2012.04.001

Blanco, F. F., & Folegatti, M. V. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4), 305-309. https://doi.org/10.1590/S0103-90162005000400001

Bowen, G. D., & Rovira, A. D. (1999). The Rhizosphere and Its Management To Improve Plant Growth. Advances in Agronomy, 66, 1-102. https://doi.org/10.1016/S0065-2113(08)60425-3

Camelo, M., Vera, S. P., & Bonilla, R. R. (2011). Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Ciencia & Tecnología Agropecuaria, 12(2), 159-166. https://doi.org/10.21930/rcta.vol12_num2_art:227

Comexperú. (2021). Exportación de café aún no se recupera. Semanario 1092. https://www.comexperu.org.pe/articulo/exportacion-de-cafe-aun-no-se-recupera#:~:text=Entre enero y julio de,enviado en la última década

Crowley, D. E., Wang, Y. C., Reid, C. P. P., & Szaniszlo, P. J. (1991). Mechanisms of iron acquisition from siderophores by microorganisms and plants. Iron Nutrition and Interactions in Plants, 130, 179-198. https://doi.org/10.1007/978-94-011-3294-7_27

Dobereiner, J., Urquiaga, S., & Boddey, R. M. (1995). Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertilizer research, 42, 339-346. https://doi.org/10.1007/BF00750526

Favarin, J. L., Dourado Neto, D., García García, A., Villa Nova, N. A., & Favarin, Maria da Graça Guilherme, V. (2002). Equações para a estimativa do índice de área foliar do cafeeiro. Pesquisa Agropecuária Brasileira, 37(6), 769-773. https://doi.org/10.1590/S0100-204X2002000600005

Gutierrez Contreras, E. (2020). Microorganismos antagonistas para el manejo de Meloidogyne spp. en el cultivo de café en el distrito de San Martín de Pangoa [Universidad Nacional del Centro del Perú]. http://hdl.handle.net/20.500.12894/6455

Higuita Ramirez, A. M., & Restrepo Rivillas, A. M. (2019). Desarrollo de un bioinsumo agrícola con base en un consorcio de Bacillus subtilis- Pseudomonas sp. [Universidad EAFIT]. http://hdl.handle.net/10784/15882

Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48(1), 1-13. https://doi.org/10.1016/J.FEMSEC.2003.11.012

Junta Nacional del Café. (2020). El Café De Perú. https://juntadelcafe.org.pe/el-cafe-de-peru/

Pedraza, R., Teixeira, K.-R. S., Fernández Scavino, A., García De Salamone, I., Baca, B., Azcón, R., Baldani, V., & Bonilla, R. (2010). Microorganismos que mejoran el crecimiento de las plantas y la calidad de los suelos. Revisión. Ciencia & Tecnología Agropecuaria, 11(2), 155-164. https://doi.org/10.21930/rcta.vol11_num2_art:206

Peer, van R. ., Niemann, G. J. ., & Shippers, B. (1991). Induced Resistance and Phytoalexin Accumulation in Biological Control of Fusarium Wilt of Carnation by Pseudomonas sp. Strain WCS417r. Phytopathology, 81, 728-734. https://doi.org/10.1094/PHYTO-81-728

Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403-415. https://doi.org/10.1007/S00374-015-0996-1

Rives, N., Acebo, Y., & Hernández, A. (2007). Reseña bibliográfica: Bacterias promotoras del crecimiento vegetal en el cultivo del arroz (Oryza sativa L.). perspectivas de su uso en Cuba. Revista Cultivos Tropicales, 28(2), 29-38. https://doi.org/10.1234/CT.V28I2.310

Santos, C. H. B., Nascimento, F. C. do, Lobo, L. L. B., Martins, A. B. G., Teixeira, G. H. de A., & Rigobelo, E. C. (2020). Effect of encapsulated plant growth promoting microorganisms on soil biochemical parameters and development of fruit tree seedlings. Australian Journal of Crop Science, 14(3), 3006-3014. https://doi.org/10.21475/ajcs.20.14.03.p2434

SCAN. (2017). Estudio de mercado del café peruano (Cámara Peruana de Café y Cacao (ed.); Primera Ed). Aleph Soluciones Gráficas. https://camcafeperu.com.pe/admin/recursos/publicaciones/Estudio-de-mercado-del-cafe-peruano.pdf

Tejera-Hernández, B., & Rojas-Badía, M. M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. Ciencias Biológicas, 42(3), 131-138. https://revista.cnic.cu/index.php/RevBiol/article/view/556

Utkhede, R. S., & Koch, C. A. (1999). Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Canadian Journal of Plant Pathology, 21(3), 265-271. https://doi.org/10.1080/07060669909501189

REACAE

Published

2022-07-20

How to Cite

Delgado-Torres, N. A., Chumacero-Acosta, J. S., Rodriguez-Perez, L. E., Tuesta-Casique, A., & Alvarez-Arista, Y. (2022). Bacillus subtilis as a growth promoter in the cultivation of coffe (Coffea arabica). Revista Amazónica De Ciencias Ambientales Y Ecológicas, 1(2), e345. https://doi.org/10.51252/reacae.v1i2.345

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.