Baylon-Cuba, M, V. et al.
10 Rev. Vet. Zootec. Amaz. 2(2): e395; (jul-dic, 2022). e-ISSN: 2810-8175
Franz, C., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their
implications in food safety. International Journal of Food Microbiology, 151(2).
https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
Gauthier, R. (2005). La Salud Intestinal: Clave de la Productividad - El Caso de los Ácidos Orgánicos (Jefo
Nutrition Inc.). Avicultura. https://www.engormix.com/avicultura/foros/salud-intestinal-clave-
productividad-t3528/
GenBank. (1988). Base de datos de secuencias genéticas de NIH. The National Center for Biotechnology
Information. https://www.ncbi.nlm.nih.gov/genbank/
Messaoudi, S., Manai, M., Kergourlay, G., Prévost, H., Connil, N., Chobert, J.-M., & Dousset, X. (2013).
Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiology, 36(2), 296–304.
https://doi.org/10.1016/j.fm.2013.05.010
Mitsui, K., Yasui, H., Nakamura, N., & Kanazawa, H. (2005). Oligomerization of the Saccharomyces
cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. Biochimica et
Biophysica Acta (BBA) - Biomembranes, 1720(1–2), 125–136.
https://doi.org/10.1016/j.bbamem.2005.11.005
Quigley, E. (2010). Prebiotics and probiotics modifying and mining the microbiota. Investigación
Farmacológica, 61(3). https://doi.org/10.1016/j.phrs.2010.01.004
Singh, K., Kallalib, B., Kumar, A., & Thaker, Av. (2011). Probiotics: A review. Asian Pacific Journal of
Tropical Biomedicine, 1(2), S287–S290. https://doi.org/10.1016/S2221-1691(11)60174-3
Ssefidi, A., & Ghoorchi, T. (2006). KhakEffect of Probiotic on Performance and Immunocompetence in
Broiler Chick. The Journal of Poultry Science, 49(3), 296–300. https://doi.org/10.2141/jpsa.43.296
Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy.
International Journal of Food Microbiology, 36(1), 1–29. https://doi.org/10.1016/s0168-
1605(96)01233-0
Suskovic, J., Brkic, B., Matosic, S., & Maric, V. (1997). Lactobacillus acidophilus M92 as potential probiotic
strain. Milchwissenschaft (Alemania), 52(8), 430–435. https://doi.org/https://agris.fao.org/agris-
search/search.do?recordID=DE1997893704
Telleza, G., PixleybR, C., WolfendenbS, E., Laytona, L., & Hargisa, B. M. (2012). Probiotics/direct fed
microbials for Salmonella control in poultry. Food Research International, 45(2), 628–633.
https://doi.org/10.1016/j.foodres.2011.03.047
Tilsala-Timisjärvi, A., & Alatossava, T. (1997). Development of oligonucleotide primers from the 16S-23S
rRNA intergenic sequences for identifying different dairy and probiotic lactic acid bacteria by PCR.
International Journal of Food Microbiology, 35(1), 49–56. https://doi.org/10.1016/s0168-
1605(97)88066-x
Torres, C., & Zarazaga, M. (2002). Antibióticos como promotores del crecimiento en animales. ¿Vamos por
el buen camino? Gaceta Sanitaria, 16(2), 109–112.
https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0213-91112002000200002
Viegas, C. A., Almeida, P. F., Cavaco, M., & Correia, S. (1998). The H(+)-ATPase in the plasma membrane of
Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium
accompanying the decrease in intracellular pH and cell viability. Applied and Environmental
Microbiology, 64(2), 779–783. https://doi.org/10.1128/AEM.64.2.779-783.1998
Watson, R., & Preedy, V. (2013). Bioactive Food as Dietary Interventions for Arthritis and Related
Inflammatory Diseases. In Arthritis and Related Inflammatory Diseases. (2nd ed., pp. 357–370).
https://doi.org/10.1016/C2011-0-07467-7