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ABSTRACT 

Accurate classification of psoriasis is critical in dermatological diagnostics due to the disease’s diverse clinical presenta tions 

and varying severity levels. With numerous subtypes and their visual similarities to other dermatological conditions, precise  

diagnosis typically requires expert medical knowledge. Early and accurate identification of psoriasis subtypes is essential for 

initiating timely treatment. This study introduces a novel hybrid deep learning architecture that integrates EfficientNet with 

Long Short-Term Memory (LSTM) networks for the automated classification of psoriasis from dermoscopic images. The 

proposed model is designed to simultaneously capture spatial features through EfficientNet and temporal or sequential 

patterns via LSTM units, thereby improving classification performance. The models are trained and tested on a publicly 

benchmark dataset comprising 7 distinct classes using the publically available benchmark dataset by Dermnet and BFL-NTU. 

Experimental results demonstrate that the proposed architecture significantly outperforms the baseline models such as 

VGG16 and ResNet50, with superior accuracy 89.7% and robust performance across metrics like recall, F1 -score with 88%, 

and Region of Convergence (ROC) of 97%. This compact design with low trainable parameters reduces the computational 

time and memory makes the model well-suited for deployment for portable devices and enabling real-time mobile-based 

dermatological assessments. 

Keywords: skin disease; long short term memory; psoriasis; efficient net 

RESUMEN 

La clasificacio n precisa de la psoriasis es crucial en el diagno stico dermatolo gico debido a las diversas presentaciones clí n icas 

de la enfermedad y sus distintos niveles de gravedad. Con numerosos subtipos y sus similitudes visuales con otras afecciones 

dermatolo gicas, un diagno stico preciso generalmente requiere conocimientos me dicos especializados. La identificacio n 

temprana y precisa de los subtipos de psoriasis es esencial para iniciar un tratamiento oportuno. Este estudio presenta una 

novedosa arquitectura hí brida de aprendizaje profundo que integra EfficientNet con redes de memoria a largo plazo (LSTM) 

para la clasificacio n automatizada de la psoriasis a partir de ima genes dermatosco picas. El modelo propuesto esta  disen ado 

para capturar simulta neamente caracterí sticas espaciales mediante EfficientNet y patrones temporales o secuenciales 

mediante unidades LSTM, mejorando así  el rendimiento de la clasificacio n. Los modelos se entrenan y prueban en un conjunto 

de datos de referencia pu blico que comprende siete clases distintas, utilizando el conjunto de datos de referencia disponible 

pu blicamente de Dermnet y BFL-NTU. Los resultados experimentales demuestran que la arquitectura propuesta supera 

significativamente a los modelos de referencia, como VGG16 y ResNet50, con una precisio n superior del 89,7% y un 

rendimiento robusto en me tricas como la recuperacio n, la puntuacio n F1 del 88% y la regio n de convergencia (ROC) del 97%. 

Este disen o compacto, con bajos para metros de entrenamiento, reduce el tiempo de ca lculo y la memoria, lo que lo hace ideal 

para su implementacio n en dispositivos porta tiles y permite evaluaciones dermatolo gicas mo viles en tiempo real.  

Palabras clave: enfermedad de la piel; memoria a corto plazo; psoriasis; red eficiente
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1. INTRODUCTION  

It is a well-known fact that psoriasis is a long-lasting, inflammatory, and autoimmune disease of 

the skin that targets people all over the world, becoming unbearable for the affected ones. The 

disease is excessively characterized by the rapid growth of skin cells, which, in turn, leads to skin 

thickening and the formation of scales, reflecting a local reaction of the body (Adegun & Viriri, 

2020; Lowes et al., 2007; Pham et al., 2020; Wijesinghe et al., 2019). This type of psoriasis is usually 

covered with silvery white scales and red, and its appearance causes the feeling of itching, 

irritation, and pain.There are a few kinds of psoriasis, including plaque (the most common 

variation), guttate, Inverse, pustular, and erythrodermic psoriasis (Hammad et al., 2023). Every 

form is characterized by totally different symptoms, and as a result, accurate diagnosis and 

classification are essential parts of the treatment process and the management of the disease 

(Griffiths & Barker, 2007). That is why building up automatic and smart diagnostic systems is so 

important in the process of supporting and enhancing the skills of dermatologists involved in the 

diagnosis, enabling them to carry out their job much faster and more accurately at the same time.  

Machine Learning (ML) has become one of the most innovative technologies in healthcare, with 

medical image classification and disease diagnosis being the areas of the most significant impact 

(Esteva et al., 2017). Deep Learning (DL), a subset of Machine Learning (ML), has significantly 

transformed image-based diagnosis by enabling automatic feature extraction directly from raw 

data, eliminating the need for manual feature engineering. Convolutional Neural Networks  (CNNs) 

are among the most widely used techniques for image classification, primarily due to their 

hierarchical architecture, which effectively captures spatial and contextual information 

(Aishwarya et al., 2020; Ayad & Ismail, 2020; Huang et al., 2020). One of the most pertinent benefits 

of Deep Learning is its capability to manage these enormous and complicated datasets, which in 

turn increases the accuracy of classifying the data, and all of this is done with neither manual 

feature engineering nor the necessity to have the right dataset and the right features (Krizhevsky 

et al., 2017).  

Transfer learning has come up as a remedy to handle the lack of data in the area of medical image 

processing (Bolia & Joshi, 2024). This method entails the use of pre-trained models that are 

initially created using extensive datasets like Image Net and adjusting them to suit the precise 

needs of the target domain. This transfer learning approach shortens training duration and 

improves model performance, especially in the context of limited or small datasets (LeCun et al., 

2015). 

Although numerous researchers have worked on classifying skin diseases, only a handful has 

focused on types of psoriasis. Ahmmed et al. (2025) proposed a modified VGG-16-based approach 

for distinguishing between psoriasis and actinic keratosis, achieving approximately 90% 

classification accuracy. While the method demonstrates strong performance in binary 

classification tasks, it does not address the differentiation between various subtypes of psoriasis, 

limiting its applicability in more granular diagnostic scenarios (Ahmmed et al., 2025).  

A total of 263 samples were analysed, such as 143 from psoriasis patients and 120 from healthy 

individuals. Six machine learning models were applied, with the Extra Trees Classifier achieving 

the highest accuracy of 96.1%. The findings highlighted the potential of breath analysis for early 

detection of psoriasis. J. Wang, et al. (2025) presented a multimodal framework which was trained 

on the PUMCH-ISD dataset covering eight inflammatory skin conditions (Wang et al., 2025).  
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V. Jagannathan, et al. (2024) presented a hybrid deep learning model that combined CNN 

(Convolutional Neural Networks) with Bi-GRU (Bidirectional Gated Recurrent Units) to improve 

dermatological image classification. The model achieved high accuracy 0.818 for multi-class and 

0.911 for binary classification surpassing both single-modality and basic fusion models. It also 

outperformed 11 advanced methods on the Derm7 dataset with an accuracy of 0.807. 

Furthermore, it improved diagnostic accuracy for dermatologists with 79.1% of cases showing 

improved performance. (Jagannathan et al., 2024).  

The research conducted in 2023 by Singh.et al. introduces a deep learning framework for detecting 

psoriasis through transfer learning with VGG-16, VGG-19, and Inception V3. The models were 

assessed using a labeled image dataset of psoriasis conditions. Of the three, Inception V3 attained 

the highest accuracy of 91%. The article highlights how well deep CNNs can identify skin 

conditions and advocates for the use of pre-trained models for dependable classification. (Singh et 

al., 2023).  

Azam et al. (2022) applied machine learning algorithms including SVM, Naí ve Bayes, KNN, and 

Decision Tree to classify psoriasis using microarray gene expression data. Their findings showed 

that SVM, combined with effective feature selection, achieved the highest accuracy, demonstrating 

strong potential for genomic-based psoriasis diagnosis (Azam et al., 2022). 

Deep learning techniques utilized by S.F. Aijaz et al. (2022) to categorise various forms of psoriasis. 

The researchers used databases covering five different forms of psoriasis from BFL NTU and 

Dermnet. They used a Convolutional Neural Network (CNN) model, which has an accuracy of 

84.2% and analyses images pixel by pixel. They also investigated a Long Short-Term Memory 

(LSTM) technique, which uses historical inputs to analyse sequential data, although this method 

only achieved 72.3% accuracy (Aijaz et al., 2022).  

A deep residual network-based model for classifying psoriasis was presented by Li Peng et al. in 

2021. Their model seeks to improve accuracy, expedite the diagnostic process, and reduce the 

workload of medical practitioners by utilising deep learning technologies (Peng et al., 2021). They 

started by pre-processing the incoming data with methods like image resizing and data 

augmentation. They then built ResNet-34 to extract the distinctive characteristics of psoriasis from 

the input pictures. 

Previous research has primarily focused on distinguishing skin cancer and psoriasis from healthy 

skin or a limited range of other skin conditions. However, the classification of psoriasis subtypes 

has received relatively little attention. Moreover, while models such as modified VGG16 and Res 

Net have been commonly employed, EfficientNet architectures have also demonstrated promising 

performance in multiclass classification tasks (Bolia & Joshi, 2024). EfficientNet models achieve 

state-of-the-art accuracy while maintaining significantly fewer parameters and lower 

computational complexity (FLOPs) compared to traditional convolutional neural networks. 

EfficientNet contains approximately 5.3 million parameters, which is considerably less than 

ResNet50 with 25.6 million and VGG16 with 138 million parameters. Despite this compact 

architecture, EfficientNet not only matches but often surpasses the performance of deeper and 

more complex models such as ResNet152, making it an effective and resource-efficient choice for 

image classification tasks. Also, Long Short-Term Memory (LSTM) have shown its efficacy in earlier 

cited work (Aijaz et al., 2022; Azam et al., 2022; Jagannathan et al., 2024; Singh et al., 2023). This 

paper outlines an integrated deep learning model that merges EfficientNet with a powerful CNN 
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architecture - Bidirectional Long Short-Term Memory (LSTM) network to classify psoriasis 

diseases. 

The main contribution of this paper is: 

(1) The proposed model integrates EfficientNetB3 for spatial feature extraction with an LSTM 

network, which models dependencies across sequentially ordered feature vectors derived from 

the image. Although the input is a static image, representing spatial features as sequences allows 

the LSTM to capture contextual relationships across regions, thereby improving the classification 

of psoriasis subtypes. 

(2) The psoriasis classes Plaque, pustular, inversus, erythrodermic, guttate types of psoriasis along 

with psoriasis on scalp and nails are taken into attention. 

(3) The proposed model offers a novel configuration characterized by low inference time and a 

reduced number of trainable parameters, making it well-suited for deployment with mobile and 

portable devices. 

2. MATERIALS AND METHODS 

2.1. Experimental Set up Database collection  

Research has been conducted to classify different forms of Psoriasis skin disease. It was 

implemented in Python using Keras with tensor flow and the open CV library with 32GB RAM and 

a Card (GPU) Intel(R) UHD Graphics 770 (NVIDIA T600) 4G, 12th Gen.Intel (R) core (TM) i5-

12600K, 3.70GHz CPU, at the Department of Computer Science Engineering, CTAE, MPUAT 

Udaipur. 

The Psoriasis database is compiled from publicly available data from DermNet. It is a freely 

accessible dataset of approximately 23,000 photos acquired and labeled by the Dermnet Skin 

Disease Atlas (DermNetNZ website, 2022). As we are working on psoriasis skin illnesses, we only 

consider classes that contain psoriasis pictures and subclasses as their types. It contains images 

of psoriasis from eight different categories, including subtypes: Plaque, Guttate, Erythrodermic, 

Inversus, Pustular, Scalp, and Psoriasis on Nails, as well as healthy skin photos of some body parts, 

are sourced from the NTU database (Li & Kong, 2017). 

2.2 Input images and pre-process 

The data images are shown in Figure 1. The dataset presented an imbalance, with guttate and 

plaque psoriasis representing the highest proportions (each with 26.5%), while erythrodermic, 

scalp, healthy skin, and pustular psoriasis had considerably fewer samples. Specifically, the 

distribution was as follows: Type (n): Plaque (99), Pustular (48), Guttate (96), Inversus (25), 

Erythrodermic (35), Nails (30), Scalp (28), Healthy Skin (25). This imbalance can be addressed 

using data augmentation techniques during the training process (Abbas et al., 2024). These 

included random rotations, horizontal and vertical flipping, zooming, contrast adjustment, 

brightness variation, and slight translations, which simulate real-world variations in skin lesions. 

Regarding the data split, 86.3% of the data was used for training and 13.7% for testing, ensuring 

sufficient data for model learning while maintaining a robust evaluation set. For experimental 

analysis, each psoriasis class consisted of approximately 250 to 300 images after augmentation, 

ensuring a reasonably balanced dataset for multiclass classification. This not only increased the 
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effective size of the dataset but also improved the model's robustness in recognizing diverse 

psoriasis presentations under different lighting and orientation conditions.  

 

Figure 1.  Demographic sample images taken from data sources (DermNetNZ website, 2022; Li & Kong, 2017) 

2.3 Classification 

The introduced model is the transfer learning approach that is the combination of Efficient Net 

and Bidirectional LSTM. The flow chart of the work shown in Figure 2 is implemented for capturing 

applicable features from huge-scale datasets. Several computer vision applications employ this 

algorithm to accomplish diverse tasks such as to recognize an object and segment the data. This 

algorithm is performed robustly and accurately to segment the images. The architecture of this 

algorithm plays a significant role in scaling up the dimension of width, resolution and depth of 

resources which are present in a continuous ratio (Sandler et al., 2018; Tan & Le, 2019). 

  
Figure 2. Flow chart illustrating the various phases of the proposed methodology  

This algorithm is composed of Mobile Inverted Bottleneck (MB Conv) layers in which depth-wise 

separable convolutions are integrated with inverted residual blocks as shown in Figure 3. 



 Bolia & Joshi   

6                                                                                 Rev. Cient. Sist. Inform. 5(2): e996; (Jul-Dec, 2025). e-ISSN: 2709-992X 

Moreover, the Squeeze-and-Excitation (SE) optimization is assisted in enhancing performance of 

this algorithm. 

 

Figure 3. EfficientNet Architecture for classification of Psoriasis  

Furthermore, LSTM introduces these three gates to mitigate gradient vanishing problems, 

enhancing its ability to remember information over extended periods (Graves & Schmidhuber, 

2005; Greff et al., 2017). In contrast to the traditional LSTM, a Bidirectional LSTM (Bi-LSTM) is an 

LSTM variant that processes input data in two directions: forwards and backwards. This 

bidirectional approach harnesses information from both directions, enabling the model to capture 

and learn from the input sequence in a more comprehensive manner. In standard LSTM, 

information is only learned in a unidirectional manner, moving sequentially from one part of the 

sequence to another. The selection of hyper parameters is detailed in Table 1. 

Table 1. Hyper parameters selection for the proposed model  

Hyper parameter Value 
Weights Initial 
Bias 0.1 

Dropout 
Initially value taken 0.9, 0.8. Finally selected 0.3-0.2 as model for 

validation accuracy improvement 

Learning Rate 
Experiment carried out for 0.01, 0.001 and 0.0001. Out of which 

0.0001got the better results 
Optimizer Adam 

Batch Size As the dataset hold small value, a batch size of 32 is chosen.  

Activation Function 
ReLU for intermediate layers 

Softmax at final layer 
Loss function Categorical cross entropy 

Number of epochs 
Early stopping initially applied with a patience of 5 epochs  

Subsequently, all models trained for a fixed 60 epochs to enable 
consistent performance comparison. 

3. RESULTS AND DISCUSSION 

To evaluate the performance of the model, eighty percent of the dataset is allocated for training, 

while 10% is reserved for validation and the remaining 10% for testing. To benchmark the 

performance of the proposed hybrid model, additional experiments are conducted using other 

pre-trained architectures, including ResNet50 and VGG16 for comparative classification analysis. 

All models are integrated with LSTM and evaluated under identical conditions. Among the 

evaluated architectures, the EfficientNetB3 combined with LSTM demonstrated the lowest 

number of trainable parameters as illustrated in Table 2 while also achieving the highest 

classification accuracy, thereby outperforming all other model configurations. 
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Table 2. Total number of parameters by proposed model with other models  

S.No. Model (Classifier) Total parameters 
Trainable 

parameters 
Non-Trainable 

parameters 

1 ResNet50 27275528 4742536 22532992 

2 VGG16 15649992 5014728 7635264 

3 Proposed 13553840 3363208 10190632 

Comparative accuracy graphs for other models ResNet50 and VGG16 integrated with LSTM and 

proposed model are presented in Figure 4(a), (c), and (e) respectively. Models augmented with 

LSTM showed improved validation accuracy stability and reduced performance gaps between the 

training and validation phases. This consistent behaviour highlights the potential of the LSTM to 

enhance the generalization of dynamic or sequential tasks. The loss plots for ResNet50 and VGG16 

and proposed model are shown in Figure 4(b), (d) and (f). These graphs reveal that incorporating 

LSTM not only reduces this gap, but also stabilizes the validation loss, as seen in the reduced 

fluctuations for proposed model. The proposed model achieved an accuracy of approximately 

96%, and the corresponding loss is reduced to 3–4%. The high accuracy and low loss indicate the 

learning efficiency of the model. The reduced gap between training and validation accuracy, along 

with the stabilized validation loss, underscores the robustness and efficiency of the proposed 

model in mitigating over fitting and achieving better generalization compared with other models.  

 
Figure 4. Accuracy and Loss graph comparison of various models with epoch = 60. (a), (b) Accuracy and error 

metrics in training and validation for ResNet50 with LSTM, (c), (d) Accuracy and error metrics in training and 

validation for VGG16 with LSTM, (e), (f) Accuracy and error metrics in training and validation for Proposed Hybrid 

model 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 1 
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To evaluate the effectiveness of the proposed model, we conducted 8 repeated runs of 5-fold cross-

validation and compared its performance against ResNet50, VGG16, and EfficientNetB3. The mean 

classification accuracies are comprehended in Table 3 where the proposed model achieved 

significant results outperforming other state-of-art approaches. The mean classification 

accuracies (± standard deviation) obtained is as follows: ResNet50: 75.75% ± 0.24%, VGG16: 

80.08% ± 0.14%, EfficientNetB3: 85.05% ± 0.24% and Proposed model: 89.73% ± 0.17%. 

A one-way ANOVA test revealed a statistically significant difference among the four models (F = 

9185.50, p = 5.34 × 10⁻⁴²). Furthermore, paired t-tests confirmed that the proposed model 

significantly outperformed ResNet50 (t = 130.83, p = 4.02 × 10⁻¹³), VGG16 (t = 117.51, p = 8.52 × 

10⁻¹³), and even EfficientNetB3 without LSTM (t = 25.12, p = 4.04 × 10⁻⁸). These findings provide 

strong statistical evidence for the superiority of the proposed hybrid model in psoriasis 

classification. These results confirm that the proposed model significantly outperforms the 

baseline models in terms of classification accuracy for psoriasis skin disease detection in both 

predictive performance and computational efficiency. 

The Table 3 shows that the proposed model outperforms the alternatives with balanced and 

highest scores across all metrics (Accuracy=89.7%, Precision, Recall, and F1-Score at 88%) and 

the fastest inference time (2 sec 49ms/step). These results highlight the effectiveness and 

practicality of the proposed model for real-time applications. The integrated AUC of all class for 

the model is shown in Figure 5 where the model achieves an AUC of 0.97. 

Table 3. Analysis of the proposed and alternative model evaluation with k=5 fold  

Model Accuracy Precision Recall F1-Score Inference time 

ResNet50 75.75 82 82 82 2 sec, 79ms/step 

VGG16 80.08 82 83 81 9 sec 348ms/step 

EfficientNetB3 85.05 86 86 86 3 sec 68ms/step 

Proposed Model 89.73 88 88 88 2 sec 49ms/step 

 

 
Figure 5. The integrated ROC curve for all eight distinct classes of Psoriasis  

The Table 4 presents the precision, recall, and F1-score for each subclass of psoriasis, including 

healthy skin. The proposed model demonstrates strong performance across most categories, with 

perfect scores (1.00) for Nails and Healthy skin, indicating excellent classification capability for 
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these classes. The model also performs very well on Scalp, Inversus, and Guttate with F1-scores of 

0.96, 0.95, and 0.91 respectively. However, performance is relatively lower for the Erythrodermic 

class, which has an F1-score of 0.60 due to a lower recall (0.50), its visual characteristics such as 

widespread redness and inflammation can resemble features of other subtypes like Plaque or 

Guttate psoriasis, leading to misclassification as suggesting challenges in correctly identifying all 

positive instances of this rare type. Pustular psoriasis also shows moderate performance (F1-

score: 0.71), likely due to limited or imbalanced data. Overall, the model achieves an average 

precision, recall, and F1-score of 0.88, reflecting its strong and balanced classification ability 

across multiple subclasses of psoriasis. 

Table 4. Summary of classification for various types of psoriasis disease of the proposed model 

Psoriasis sub 
type 

Precision Recall F1 score AUC 
Support 
images 

Plaque 0.86 0.90 0.88 0.97 21 
Pustular 0.91 0.67 0.77 0.94 15 

Erythrodermic 0.43 0.50 0.60 0.87 6 
Guttate 0.88 1.00 0.94 1.00 22 
Inversus 0.80 0.80 0.80 1.00 5 

Scalp 0.96 0.96 0.96 1.00 24 
Nails 1.00 1.00 1.00 1.00 7 

Healthy skin 1.00 0.89 0.99 1.00 9 
Average 0.89 0.88 0.88   

Table 5. Comparison of the earlier cited work with proposed model  

Author & Year 
Technique Used 

(Classifier) 
Performance 

Metrics 
Findings 

Aijaz et al. (2022) CNN and LSTM 
Accuracy CNN-
84.2%, LSTM-

72.3% 

Classified 5 sub-classes of Psoriasis. 
Accuracy can be improved further 

Yang et al. (2021) EfficientNet V-4 
Sensitivity= 92.9 
for four class 

Psoriasis was depicted but still sub class 
classification was missing. More ever AUC 
,Inference time and other parameters not 

taken into consideration 

Zhu et al. (2024) AOFL Net Accuracy: 85.78% 
Classifies Psoriasis with Eczema but sub –

types not taken into consideration.  

Ahmmed et al. (2025) Modified VGG 90% 
The model distinguishes psoriasis and 
actinic keratosis. Two classes taken into 

consideration. 

Our Work (2025) 
EfficientNetB3-
BiLSTM Model 

Acc. 89.7% 
Precision: 89% 
Recall: 88% 

Sensitivity: 88% 
F1-score: 88% 

AUC:0.97 
Inference Time: 

49ms/step 

The model includes the entire sub types of 
psoriasis along with nails and scalp. The 

work demonstrates fewer trainable 
parameters too. The accuracy obtained 

with k=5 fold method. 

The studies cited in Table 5 primarily focus on binary classification or clinical data, often 

constrained by the limited availability of benchmark datasets, with most research cantered on skin 

cancer. Additionally, these works mainly address a narrow set of psoriasis subtypes. In contrast, 

the novel approach presented here leverages a lightweight, high-performance model that not only 

achieves high accuracy but also ensures low inference time an aspect largely overlooked by 

previous researchers. This method expands the scope to include a wider range of psoriasis 

subtypes. 
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CONCLUSIONS 

In this study, we presented a novel method for classifying multiple categories of psoriasis using a 

hybrid deep learning architecture that combines EfficientNet-B3 and Bi-LSTM. The model’s 

reduced number of trainable parameters contributes to lower computational requirements, 

making it efficient and well-suited mobile-friendly deployment environments. By classifying seven 

distinct types of psoriasis along with healthy images, the proposed model demonstrated strong 

performance, achieving an impressive accuracy of 89.7% and an AUC of 0.97, indicating its 

effectiveness in accurately distinguishing among various psoriasis subtypes an aspect that has 

been largely underexplored in previous state-of-the-art approaches. These results indicate the 

efficacy of our approach in accurately classifying psoriasis types using benchmark dataset.  

The dataset showed mild class imbalance, which could influence model generalization. 

Additionally, the lack of external validation and dermatologist suggestions on independent 

datasets and model performance limits the applicability of results to broader clinical populations. 

Future work should explore the use of vast multi-center datasets. Furthermore, the integration of 

attention models in the future iterations of our classification framework can enhance model 

efficacy. The system's ability to operate without direct dermatologist intervention enhances its 

potential applicability in clinical settings, particularly in areas with limited access to specialist 

care. Overall, our research emphasizes the potential of deep learning techniques for medical image 

analysis and offers a valuable contribution to the field of dermatology.  
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