
 Rev. Cient. Sist. Inform. 5(2), e952, doi: 10.51252/rcsi.v5n2.952   

  

Original article 
Artí culo orginal 

Jul-Dec, 2025 https://revistas.unsm.edu.pe/index.php/rcsi 
e-ISSN: 2709-992X 

 

© The authors. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestr icted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

 

SynKGen: A kernel PCA-Based oversampling method for 
enhanced credit card fraud detection 

SynKGen: Un me todo de sobremuestreo basado en kernel PCA para mejorar la 
deteccio n de fraudes en tarjetas de cre dito

 Fray L. Becerra-Suarez1*,  Luciani J. Jiménez-Fernández2,  Estrella D. Ticona-Tapia3,  José 

Rolando Cárdenas-Gonzáles3,  Pepe Humberto Bustamante-Quintana3

1Grupo de Investigacio n en Inteligencia Artificial (UMA-AI), Universidad Privada Norbert Wiener, Lima, Peru 
2Escuela de Ingenierí a de Sistemas e Informa tica, Universidad Tecnolo gica del Peru , Lima, Peru  
3Grupo de Investigacio n en Tecnologí as, Sociedad y Educacio n, Universidad Sen or de Sipa n, Chiclayo, Peru   

Received: 07 Apr. 2025 | Accepted: 18 Jul. 2025 | Published: 20 Jul. 2025 

Corresponding author*: fray.becerra@uwiener.edu.pe  

How to cite this article: Becerra-Suarez, F. L., Jime nez-Ferna ndez, L. J., Ticona-Tapia, E. D., Ca rdenas-Gonza les, J. R. & Bustamante-
Quintana, P. H. (2025). SynKGen: A kernel PCA-Based oversampling method for enhanced credit card fraud detection. Revista Científica de 
Sistemas e Informática, 5(2), e952. https://doi.org/10.51252/rcsi .v5i2.952  

ABSTRACT 

Credit card fraud detection is a growing challenge in the financial domain due to data imbalance, where fraudulent 

transactions are minimal compared to legitimate ones. This study presents SynKGen, a data augmentation method 

using Kernel PCA with Gaussian perturbations to generate synthetic samples of the minority class, contrasting it with 

ADASYN and SMOTE. By introducing variance analysis with controlled perturbations in the minority class, the 

proposed approach mitigates the risks of overfitting associated with traditional interpolation-based techniques. Four 

classifiers, XGBoost, RandomForest, AdaBoost and VotingClassifier, were evaluated using the original data set and 

variants with data augmentation. The RandomForest classifier achieved the best performance when using data 

generated with SynKGen (accuracy: 0.9949, precision:0.9899) outperforming the results obtained with ADASYN and 

SMOTE. Experimental results demonstrate that SynKGen improves the effectiveness of credit card bank fraud detection. 

These findings highlight the importance of data augmentation strategies to optimize classifier performance in financial 

contexts with unbalanced data. 

Keywords: ADASYN; class imbalance; ensemble learning; financial security; Kernel PCA; machine learning; SMOTE 

RESUMEN 

La deteccio n de fraude con tarjeta de cre dito es un desafí o creciente en el a mbito financiero debido al desequilibrio de 

datos, donde las transacciones fraudulentas son mí nimas en comparacio n con las legí timas. Este estudio presenta 

SynKGen, un me todo de aumentacio n de datos que utiliza Kernel PCA con perturbaciones gaussianas para generar 

muestras sinte ticas de la clase minoritaria, contrasta ndolo con ADASYN y SMOTE. Al introducir el ana lisis de varianzas 

con perturbaciones controladas en la clase minoritaria, el enfoque propuesto mitiga los riesgos de sobreajuste asociado 

a las te cnicas tradicionales basadas en interpolacio n. Se evaluaron cuatro clasificadores, XGBoost, RandomForest, 

AdaBoost y VotingClassifier, utilizando el conjunto de datos original y variantes con aumentacio n de datos. El 

clasificador RandomForest alcanzo  el mejor desempen o al utilizar datos generados con SynKGen (exactitud: 0,9949, 

precisio n:0,9899) superando a los resultados obtenidos con ADASYN y SMOTE. Los resultados experimentales 

demuestran que SynKGen mejora la efectividad de la deteccio n de fraudes bancarios en tarjetas de cre dito. Estos 

hallazgos destacan la importancia de estrategias de aumentacio n de datos para optimizar el rendimiento de los 

clasificadores en contextos financieros con datos desbalanceados. 

Palabras clave: ADASYN; desequilibrio de clases; aprendizaje conjunto; seguridad financiera; Kernel PCA; aprendizaje 

automa tico; SMOTE 
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1. INTRODUCTION  

1.1 Background 

In an increasingly globalized world, influenced by various information technologies, the revolution 

in how people conduct their financial transactions is undeniable, driven by different banking 

applications, e-wallets, and digital payment platforms. All that is needed is a device with an 

internet connection to make any type of digital payment, replacing cash and traditional payment 

methods. This has allowed the economies of any nation to eliminate geographical barriers and 

facilitate international trade. However, this digitalization brings with it many security concerns, 

with credit card fraud being one of the greatest worries in the financial sector (Charizanos et al., 

2024; Chatterjee et al., 2024; Hasan et al., 2023) 

Financial losses resulting from credit card fraud cannot be underestimated (Alfaiz & Fati, 2022; 

Hilal et al., 2022; Sulaiman et al., 2024). A study by Juniper Research, (n.d) estimates that fraud 

losses will exceed $206 billion between 2021 and 2025, driven by the increase in synthetic identity 

fraud and account takeover. In Peru, one of the largest banks, Interbank, was a victim of a data 

breach by a third party, compromising the security of its customers' data. While no financial losses 

were reported, the breach has raised concerns among its customers and highlighted the need to 

implement new mechanisms to address these threats (Interbank, 2024). 

Credit card fraud comes in various forms that exploit different vulnerabilities in the financial 

system. These include application fraud through the theft of credentials and creation of fake 

accounts; card cloning via magnetic stripe data capture; transactions without the physical 

presence of the card; complete card forgery; use of lost or stolen cards; identity theft of the 

cardholder; interception of new cards during postal delivery; full account takeover; injection of 

malicious code on websites; and merchant collusion in which they share cardholder information 

without authorization. Each of these fraud types represents a significant risk to financial security 

and requires different strategies for prevention and detection (Jain et al., 2019; Rb & Kr, 2021;  

Wijaya et al., 2024). 

1.2 Related work 

In response to these incidents, financial institutions are adopting advanced technologies such as 

machine learning to detect and prevent credit card fraud (Cherif et al., 2023; Dastidar et al., 2024). 

However, it is important to note that, according to Charizanos et al. (2024), the characteristics of 

fraud are dynamic and changing due to the variable behavior of cybercriminals and the 

demographics of the customers involved. Analytical methods are used to identify fraudulent and 

non-fraudulent patterns in transactions; however, they can be sensitive to class imbalance issues 

and result in biased predictions towards the majority class. Additionally, fraud detection systems 

must operate efficiently in real time to handle the large volume of global transactions per minute 

and ensure continuous protection of consumer accounts.  

Different studies in the literature have been proposed to address the fraud detection problem. 

Rangannatha and Syed (2025), presented a model to classify fraud in mobile transactions by 

implementing a 3D Bidirectional Quasi-Recurrent Neural Networks architecture and a blockchain-

based consensus algorithm. They used a Bitcoin transaction dataset and data augmentation 

techniques that allowed balancing the minority class against the majority class. The model 

improved accuracy by 12.09%, 8.91%, and 6.92% compared to implemented methods such as K-
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nearest neighbor-Distributed Blockchain Consortium (KNN-DBC), Decision tree-Ethereum block-

chain-enabled smart contract (DT-EBSC), and Heterogeneous Graph Transformer Networks-

Ethereum smart contract (HGTN-ESC). RB and KR (2021) implemented Support Vector Machines 

(SVM), K-nearest neighbors (KNN), and an Artificial Neural Network (ANN) to predict credit card 

fraud. For this purpose, they used a transaction dataset collected between 2013 and 2014, which 

was preprocessed, cleaned, and normalized. Of the three methods evaluated, ANN presented the 

best result in the accuracy metric with a value of 99.92%. 

In the study by Ileberi and Sun (2024), a hybrid deep learning model combining CNN, LSTM, 

Transformers and XGBoost was tested. The model was evaluated using a highly unbalanced 

European dataset, with only 0.172% of the records corresponding to the minority class of 

fraudulent transactions. The results obtained show a significant improvement in fraud detection, 

with a sensitivity of 96.1% and an AUC of 97.2%. In Tang and Liu (2024), they implemented an 

algorithm based on Structured Data Transformer (SDT) combined with federated learning. The 

performance of this algorithm was evaluated using two data sets, one with real data from the year 

2013 and the other with simulated data from the year 2020. For the two sets, 5-fold cross-

validation was applied, which allowed achieving an AUC score of 88.2% for the real dataset and 

81.6% for the simulated dataset. 

Li et al. (2024) used a very recent Kolmogorov-Arnold Network (KAN) approach applied in the 

context of fraud detection. The performance of KAN was evaluated on two data sets, obtaining 99% 

accuracy. Although the results are very favorable, this study has certain limitations, especially with 

the time used for training and validation. Another approach based on deep neural networks is the 

study by Adil et al. (2024), who proposed a framework called Optimized Deep Event-based 

Network (OptDevNet). This model achieved an accuracy of 99.98% compared to classical 

algorithms such as SVM or RandomForest, demonstrating its effectiveness in the context of fraud 

detection. 

Alfaiz and Fati (2022) conducted a comparative study of 66 ML models for detecting credit card 

fraud. These models were evaluated in two stages using a European dataset with records from 

2013. In both stages, the models were evaluated using cross-validation (K=5). In the first stage, 

nine models were implemented, three of which advanced to the second stage, where they were 

compared with 19 resampling techniques. The experimental results show that the AllKNN-

CatBoost model obtained the best result, outperforming the others with an AUC of 97.94% and a 

Recall of 95.91%. 

Coello et al. (2023), also conducted a comparative study between Logistic Regression, Decision 

Tree, XGBoost, Random Forest and Neural Network, which were evaluated on a data set with a very 

significant class imbalance between the minority and majority class. To address the data 

imbalance problem, random sampling, SMOTE and ADASYN techniques were implemented. The 

results obtained in this study highlight the combination of Random-Forest with ADASYN, achieving 

the best performance with an F1-Score of 98%. Similarly, Mondal et al. (2021), investigated the 

effectiveness of SMOTE and ADASYN data augmentation techniques with four classifiers (KNN, 

Logistic Regression, RandomForest and Bagging Classifier). The results showed that the SMOTE 

and RandomForest data augmentation technique scored the best for area under the ROC curve 

with 91.1%. 
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Zhao et al. (2024) used the LightGBM model, which was taken as the basis for the development of 

two new methods. The first was a class-balancing model with cost harmonization called CB-CHL-

LightGBM; and the second was an oversampling model without cost harmonization OS-CHL-

LightGBM. These methods improved the efficiency in detecting fraudulent transactions while 

addressing the problem of data imbalance, which is a very common problem in the financial 

domain. The results obtained on the data sets used for the F2 score ranged from 82% to 83%.  

In general, these previous studies on credit card fraud detection present the following limitations:  

• Data processing is considered one of the most important stages for obtaining good results 

with ML classifiers. In some studies (Ileberi & Sun, 2024; Ranganatha & Syed, 2025; Tang & 

Liu, 2024), this stage lacks de-tailed documentation on the handling of outliers, which can 

compromise the reproducibility and reliability of the results, as the presence of these 

outliers introduces significant biases in model training and distorts their predictive 

capability. 

• Additionally, the performance of the classifiers can be significantly affected when working 

with highly imbalanced datasets, an aspect that often does not receive the necessary 

attention in the studies presented in (Adil et al., 2024; Alfaiz & Fati, 2022; Ileberi & Sun, 

2024; Le et al., 2024; Tang & Liu, 2024; Rb & Kr, 2021). 

• While classic oversampling techniques such as ADASYN, SMOTE, among others, are 

implemented to balance the minority class, these approaches may have limitations in 

generating synthetic samples that faithfully represent the characteristics of the original 

fraudulent transactions (Coello et al., 2023; Mondal et al., 2021; Zhao et al., 2024).  

• As mentioned in Charizanos et al. (2024), the dynamic and evolving nature of financial 

fraud requires the use of up-to-date datasets to develop effective solutions. However, it is 

observed that many studies use historical datasets with a significant temporal gap 

compared to contemporary fraud patterns, which could limit the applicability of the 

proposed solutions (Alfaiz & Fati, 2022; Ileberi & Sun, 2024; Tang & Liu, 2024; Ranganatha 

& Syed, 2025; Rb & Kr, 2021). 

• In most of the studies analyzed, a fundamental aspect that is often omitted or not 

adequately addressed is the analysis of the training and inference times of the models, 

which are critical factors for the effective implementation of re-al-time fraud detection 

systems. The lack of this information hinders the evaluation of the practical feasibility of 

the proposed solutions in real operational environments, where the speed of detection is 

as important as accuracy. In other studies, the need for computational resources is quite 

evident, which could limit their viability as a suitable solution (Adil et al., 2024; Ileberi & 

Sun, 2024; Le et al., 2024). 

1.3 Contributions of the study 

To overcome the above challenges, this research presents the following contributions:  

• A comprehensive data preprocessing framework designed to remove outliers and 

irrelevant descriptors that do not add significant value to the performance of machine 

learning classifiers. 

• Since the dataset presents a marked class imbalance, two data augmentation techniques 

were implemented being, ADASYN and SMOTE. In addition, a method called SynKGen is 
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proposed, which combines Kernel PCA with Gaussian perturbations, allowing to generate 

synthetic samples while preserving the highest statistical integrity of the original dataset.  

• The performance of the implemented ensemble classifiers was evaluated using a large set 

of metrics, allowing a comprehensive evaluation. Experimental results show that the 

classifiers achieved their highest performance greater than 0.995 when trained and tested 

with the data generated by SynKGen, compared to the results obtained with ADASYN and 

SMOTE. These findings validate the effectiveness of the proposed method for data 

augmentation. 

The remainder of this paper is structured as follows: Section 2 details the materials and method, 

including the data augmentation and classifier configurations implemented. Section 3 presents the 

experimental results, followed by a discussion of their implications. Finally, Section 4 describes the 

conclusions and future research directions. 

2. MATERIALS AND METHODS 

The methodology of this work is summarized in Figure 1, which broadly outlines each of the 

phases considered. It starts with the definition of the dataset, which undergoes data preprocessing 

to eliminate redundant values such as missing values, du-plicates, positive infinities, negative 

infinities, and descriptors that have the same value across all records. Next, the SynKGen data 

generation method is developed and implemented, along with other techniques such as ADASYN 

and SMOTE. Each of the generated synthetic datasets is divided into 80% for training and 20% for 

testing. Finally, the XGBoost, RandomForest, AdaBoost, and VotingClassifier models are 

implemented to perform the binary classification of credit card fraudulent transactions.  

 

Figure 1. Proposed work methodology 

2.1 Materials 

The dataset used in this study is accessible on Kaggle (2024). It simulates real-world transactions, 

allowing researchers and analysts to study behavioral patterns and anomalies in a controlled 

environment. This is essential for testing fraud detection algorithms before applying them in real-

life scenarios. The dataset comprises 100 000 records and seven descriptors, including a binary 

label that classifies fraudulent transactions with a value of 1 and normal transactions with a value 

of 0. It is important to note that fraudulent transactions represent only 1% of the total records, 

highlighting the imbalance in the data. The implementation of oversampling techniques and ML 

classifiers was carried out using the Python programming language version 3.9.1 and the Scikit-

learn library. The computations were performed on a machine powered by an AMD Ryzen 7 3700U 

processor, equipped with a Radeon Vega Mobile GPU running at 2.3 GHz, supported by 24 GB of 

RAM, and running the 64-bit Windows 11 operating system. 
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2.2 Data Preprocessing 

Data processing plays a crucial role in any machine learning model, as proper handling and 

transformation of the data is essential for obtaining more accurate and effective results (Alatawi, 

2025; Becerra-Suarez et al., 2024; Lazcano & Jaramillo-Mora n, 2025). For the selected dataset, a 

thorough analysis was conducted on duplicate values, missing values, positive and negative infinite 

values, as well as descriptors that had the same value across all records. As a result of this analysis, 

no records met the previously established conditions. Regarding the analysis of the descriptors, it 

was decided to remove "TransactionID," which stores the sequential values for each iteration, as it 

did not provide significance for the model analysis. The descriptors "TransactionType," which 

indicates whether the transaction was a purchase or a refund, and "Location," which stores the 

geographic location of the transaction, were encoded using the LabelEncoder() function from the 

Sklearn library, allowing the transformation of categorical variables into numeric ones. Finally, the 

descriptor "TransactionDate," which stores the date and time of the transaction, was removed, and 

new features were created from this descriptor, such as "Year," "Month," "Day," "Hour," and 

"DayofWeek," which allowed the decomposition of temporal information into more specific 

descriptors 

2.3 Proposed Method for Generating Synthetic Data  

The proposed method, called "SynKGen," is an oversampling technique for generating synthetic 

data focused on the minority class. This method not only preserves the structure of the minority 

class but also ensures that the generated data are representative and useful for subsequent 

modeling tasks. The mathematical process involving SynKGen is described below.  

a) Identification and separation of classes 

• The original dataset 𝐷 is divided into two subsets: 𝐷𝑀 =  {𝑋𝑖| 𝑦𝑖 = 0}, which represents the 

majority class, while 𝐷𝑚 =  {𝑋𝑖| 𝑦𝑖 = 1}, represents the minority class.  

• The descriptors of 𝐷𝑚 are extracted by removing the label 𝑦. 

b) Data Standardization 

• To standardize the values of 𝑋𝑚, normalization is applied with a mean (𝜇) equal to 0 and a 

standard deviation (𝜎) equal to 1, expressed as: 

𝑧𝑖 =  
𝑋𝑖 −  𝜇

𝜎
 (1) 

c) Dimensionality Reduction using Kernel PCA 

Kernel PCA is an extension of Principal Component Analysis (PCA) that allows working with non-

linearly separable data by using kernel functions to project the data into a higher-dimensional 

space where they may become linearly separable, which is essential for handling non-linear data, 

reducing dimensionality, and extracting com-plex features (Attouri et al., 2024; Kaib et al., 2025; 

Zhang et al., 2010). Kernel PCA accepts different types of kernels and parameters, which were 

defined after performing several tests to obtain the best results. In this case, a "linear" kernel was 

used, with a gamma value of 0.01 and 8 principal components that capture 90% of the accumulated 

variance of the data. This approach simplifies the data while preserving as much relevant 

information as possible, thus optimizing the model's performance as illustrated in Figure 2.  
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Figure 2. Analysis of the accumulated variance and number of components using Kernel PCA 

Considering the previously established parameters, Kernel PCA transforms the data into a new 

space 𝑅𝑝  (𝑝 ≤ 𝑛) using the linear kernel. The transformation is defined as: 𝜙(𝑧𝑖) =  𝑉𝑇  ∗  (𝑧𝑖 −

 𝑧𝑚𝑒𝑎𝑛), where 𝑉 represents the eigenvector matrix and 𝜙(𝑧𝑖) is the transformation to the reduced 

space. The result is 𝑋𝑚
𝐾𝑃𝐶𝐴 , a reduced representation of 𝑋𝑚

𝑠𝑐𝑎𝑙𝑒𝑑 . 

d) Generation of Synthetic Data 

• 𝑛𝑠𝑖𝑛  points are randomly selected from 𝑋𝑚
𝐾𝑃𝐶𝐴 . 

• For each point 𝑝 ∈  𝑋𝑚
𝐾𝑃𝐶𝐴, its k-nearest neighbors are identified using the Euclidean 

distance. Neighbors of 𝑝: {𝑣1, 𝑣2 , 𝑣3 , . . . , 𝑣𝑘}. 

• Each synthetic point 𝑠 is generated as 𝑠 =  𝑝 + 𝜀 +  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ({𝑣𝑖 − 𝑝| 𝑖 =  1, . . . , 𝑘}), 

where: 

𝜀 ∼ 𝑁(0, 𝛼) is the random perturbation with variance controlled by α. 

e) Inverse Transformation 

• The synthetic data is projected back to the original space using the inverse transformation 

of Kernel PCA, denoted as: 𝑠𝑠𝑐𝑎𝑙𝑒𝑑  =  𝜙−1 (𝑠), 𝑠 𝜖 𝑋𝑠𝑖𝑛𝑡
𝐾𝑃𝐶𝐴. 

• Subsequently, the data is denormalized: 𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑠𝑠𝑐𝑎𝑙𝑒𝑑 ∗ 𝜎 + 𝜇. 

Finally, the values are restricted to the valid range of each descriptor, through: 𝑠𝑐𝑙𝑖𝑝𝑝𝑒𝑑 =

 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑠𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝑚𝑖𝑛𝑗), 𝑚𝑎𝑥𝑗). 

f) Combined and labeled 

• The original data and the synthetic data are combined into the set represented as 

𝐷𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =  𝐷 ∪ {𝑠𝑐𝑙𝑖𝑝𝑝𝑒𝑑 , 𝑦 = 1| ∀𝑠 ∈  𝑋𝑠𝑖𝑛𝑡}. 

Considering the proposed method, it was applied to the dataset to balance the data of both classes, 

along with two oversampling techniques, ADASYN and SMOTE. The results are reflected in Table 

1, which shows the impact of different synthetic data generation techniques on an originally 

imbalanced dataset, with a majority class of 99000 records and a minority class of only 1000 

records. When applying the techniques, the minority class significantly increases in all techniques, 

reaching values close to 99000 records. This results in a variation of the minority class of 
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approximately 50% across all techniques, highlighting the effectiveness of these methodologies in 

balancing the dataset and bringing the class distribution closer together.  

Table 1. Generation of Synthetic Data with Oversampling Techniques  

 Dataset original ADASYN SMOTE SynKGen 
Class 0 99000 99000 99000 99000 

Class 1 1000 98940 99000 99000 
Total 100000 197940 198000 198000 

Class Variation 1% 49.48% 50% 50% 

2.4 ML models and performance evaluation 

Detecting fraud in credit card transactions represents a significant challenge for financial 

institutions. To address this issue, it is essential to have efficient and robust ML models, especially 

when data imbalance is significant, as is the case with the dataset used, and when there is a need 

to achieve high precision and low cost for false negatives. For this case, the models XGBoost, 

RandomForest, AdaBoost, and VotingClassifier have been chosen for fraud detection in credit 

cards. This approach ensures greater accuracy, reliability, and efficiency in a critical problem 

where early fraud detection is essential to minimize losses and protect users. All models were 

implemented using the Sklearn library with their default parameters. 

The dataset was divided into 80% for training and 20% for testing. The performance evaluation of 

each of the implemented models was carried out using different metrics such as accuracy, 

precision, recall, F1-Score, area under the curve (AUC), Matthew’s correlation coefficient (MCC), 

and G-Mean, whose mathematical expressions are described as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒  =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  +  𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

𝐴𝑈𝐶 =  1 −
𝐹𝑃 +  𝐹𝑁

𝑇𝑃 + 𝑇𝑁
 (6) 

𝑀𝐶𝐶 = 
(𝑇𝑃 ∗ 𝑇𝑁)  −  (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁 )
 (7) 

𝐺 − 𝑀𝑒𝑎𝑛  = √
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 ∗  

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 (8) 

where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, 

and false negatives, respectively. 

The reason for including the MCC and G-Mean metrics in this evaluation is that they allow for a 

more balanced and accurate assessment of the classifiers compared to the other established 

metrics. MCC has the advantage of being a balanced metric, as it penalizes incorrect predictions 

and provides a better measure of the overall quality of the classifier. An MCC value close to 1 
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indicates a model with excellent performance in classifying both classes, while a value close to -1 

indicates a model that predicts incorrectly (Yang et al., 2024). On the other hand, G-Mean is useful 

in problems where both classes are important, as it requires classifiers to not only correctly 

identify positive cases but also minimize false negatives and false positives (Tang & He, 2015).  

3. RESULTS AND DISCUSSION 

This section presents and analyzes the results obtained from evaluating the four ML classifiers for 

detecting fraudulent credit card transactions: XGBoost, Random-Forest, AdaBoost, and 

VotingClassifier. 

Table 2 presents an analysis of the training and inference times used by different classifiers applied 

to the datasets. The SynKGen method shows interesting behavior in terms of training time 

(84.8718 seconds) and inference time (0.8214 seconds) for the RandomForest classifier. Although 

it is not the fastest with other classifiers, it positions itself as a robust option compared to ADASYN 

and SMOTE. In the case of the XGBoost model, it presents a training time of 1.5230 seconds with 

SynKGen, which is higher than SMOTE (3.0505 seconds), but much faster than ADASYN (1.3143 

seconds). XGBoost demonstrates the shortest training and inference time with ADASYN, however, 

VotingClassifier requires the longest time at 135.6810 seconds. Regarding inference time, SynKGen 

has competitive performance for RandomForest and VotingClas-sifier. Although classifiers on 

other datasets are generally more efficient in terms of training and inference times, SynKGen 

stands out as an option that offers a good balance between generating quality synthetic data and 

reasonable computational times. In the original dataset, XGBoost presents the best time for 

training and inference. 

Table 2. Training and inference time (seconds) 

Classifiers 
Dataset original ADASYN SMOTE SynKGen 

Train 
Time 

Inference 
Time 

Train 
Time 

Inference 
Time 

Train 
Time 

Inference 
Time 

Train 
Time 

Inference 
Time 

XGBoost 0.63120 0.0882 1.31430 0.1579 3.0505 0.1795 1.5230 0.2382 

RandomForest 35.4048 0.5618 91.5989 1.5918 91.7315 1.6850 84.8718 0.8214 
AdaBoost 6.69060 0.2413 13.7830 0.5574 15.3522 0.5598 29.5986 0.5693 

VotingClassifier 41.3928 0.7956 105.8989 2.0855 114.7821 2.4540 135.681 1.6520 

Bold text: Shorter training and inference time 

For the four evaluated classifiers, their respective confusion matrices were obtained on the test 

group, composed of 20% of the total data. These matrice reflect the performance of each model in 

terms of true positives, true negatives, false positives, and false negatives, providing a detailed view 

of their classification capability (Table 3). 

Table 3. Confusion matrix results for data augmentation techniques  

Classifier 
Original Dataset ADASYN SMOTE SynKGen 

Class 
0 1 0 1 0 1 0 1 

XGBoost 
19786 1 17391 2363 17,445 2332 19776 1 0 
213 0 926 18908 875 18948 201 19622 1 

RandomForest 
19787 0 19337 417 19,361 416 19777 0 0 
213 0 178 19656 184 19639 200 19623 1 

AdaBoost 
19787 0 14465 5289 14,331 5446 19777 0 0 
213 0 4281 15553 4195 15628 431 19392 1 

VotingClassifier 
19787 0 18706 1048 18,747 1030 19777 0 0 

213 0 193 19641 185 19638 200 19623 1 

Legend: (0): normal transactions (1): fraudulent transactions  
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Based on the confusion matrix, several performance metrics were calculated (Table 4). Although 

XGBoost, RandomForest, AdaBoost, and VotingClassifier show high accuracy (>0.9893), all present 

precision, recall, F1-Score, MCC, and G-Mean values near or equal to zero, indicating poor detection 

of positive cases. Despite an AUC of 0.9892, suggesting moderate class discrimination, the low MCC 

confirms minimal correlation between predictions and true labels. This highlights a common issue 

in imbalanced datasets: high accuracy, masking poor minority class performance. A G-Mean of 0 

further confirms the lack of balance between class-specific performance. 

Table 4. Confusion matrix metrics for the original dataset.  

Classifier Accuracy Precision Recall F1-Score AUC MCC G-Mean 
XGBoost 0.9893 0.0000 0.0000 0.0000 0.9892 -0.0007 0.0000 

RandomForest 0.9894 0.0000 0.0000 0.0000 0.9892 0.0000 0.0000 
AdaBoost 0.9894 0.0000 0.0000 0.0000 0.9892 0.0000 0.0000 

VotingClassifier 0.9894 0.0000 0.0000 0.0000 0.9892 0.0000 0.0000 

When analyzing the classifiers on the synthetic dataset generated by ADASYN (Table 5), a 

significant improvement in performance is observed. RandomForest stands out as the most 

accurate model, achieving the best metrics: accuracy (0.985), precision (0.9792), recall (0.991), 

F1-Score (0.9851), AUC (0.9847), MCC (0.97), and G-mean (0.9849). It is followed by 

VotingClassifier, with very similar results, particularly excelling in recall (0.9903) and F1-Score 

(0.9694), indicating a strong ability to detect positive cases. AdaBoost shows the weakest 

performance, with an average value of 0.7156 across all metrics. XGBoost demonstrates 

intermediate performance, standing out in recall (0.9533) and G-mean (0.9187), though still below 

the most effective models. 

Table 5. Confusion matrix metrics for the ADASYN synthetic dataset.  

Classifier Accuracy Precision Recall F1-Score AUC MCC G-Mean 
XGBoost 0.9169 0.8889 0.9533 0.9200 0.9094 0.8360 0.9161 

RandomForest 0.9850 0.9792 0.9910 0.9851 0.9847 0.9700 0.9849 
AdaBoost 0.7583 0.7462 0.7842 0.7647 0.6812 0.5171 0.7578 

VotingClassifier 0.9687 0.9493 0.9903 0.9694 0.9676 0.9381 0.9684 

Bold text: Best results 

On the synthetic dataset generated with SMOTE, RandomForest remains the top-performing and 

most balanced model across all metrics. VotingClassifier follows closely, excelling in recall 

(0.9907), F1-Score (0.97), accuracy (0.9395), and G-mean (0.9691), indicating strong detection 

and balance. XGBoost shows good results in recall (0.9559) and G-mean (0.9182) but lags behind 

with an MCC of 0.8403. AdaBoost has the weakest performance in all metrics. Full results are 

shown in Table 6. 

Table 6. Confusion matrix metrics for the SMOTE synthetic dataset.  

Classifier Accuracy Precision Recall F1-Score AUC MCC G-Mean 
XGBoost 0.9190 0.8904 0.9559 0.9220 0.9119 0.8403 0.9182 

RandomForest 0.9848 0.9792 0.9907 0.9850 0.9846 0.9697 0.9848 
AdaBoost 0.7565 0.7416 0.7884 0.7643 0.6781 0.5141 0.7558 

VotingClassifier 0.9693 0.9502 0.9907 0.9700 0.9683 0.9395 0.9691 

Bold text: Best results 

Finally, for the synthetic dataset generated with the proposed method, called SynKGen, the results 

shown in Table 7 highlight the RandomForest and VotingClassifier classifiers for their highest 

values across all metrics, with an MCC of 0.9900 and G-mean of 0.9949, indicating excellent 

balance between classes and high classification capability, without showing bias towards any of 
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the evaluated classes. XGBoost has equally exceptional results, achieving an MCC of 0.9898 and a 

G-mean of 0.9949, reflecting an equally balanced and robust performance. On the other hand, 

AdaBoost shows slightly lower performance, but the results compared to tests on other datasets 

are superior. Overall, all classifiers applied to the dataset show excellent performance, but 

VotingClassifier and RandomForest particularly stand out for their superior values especially in 

the MCC and G-mean metrics, indicating very balanced classification. 

Table 7. Confusion matrix metrics for the SynKGen synthetic dataset.  

Classifier Accuracy Precision Recall F1-Score AUC MCC G-Mean 

XGBoost 0.9949 0.9999 0.9899 0.9949 0.9949 0.9898 0.9949 
RandomForest 0.9949 1.0000 0.9899 0.9949 0.9949 0.9900 0.9949 

AdaBoost 0.9891 1.0000 0.9783 0.9898 0.9890 0.9785 0.9891 

VotingClassifier 0.9949 1.0000 0.9899 0.9949 0.9949 0.9900 0.9949 
Bold text: Best results 

When comparing the classifiers results using the original dataset, low performance is observed 

across most evaluated metrics, mainly due to class imbalance. By applying data augmentation 

techniques such as ADASYN and SMOTE, the RandomForest model shows a notable improvement 

in performance. However, when classifiers are trained on data generated by SynKGen, a significant 

improvement is evident, achieving the best results across all metrics and classifiers, particularly 

with RandomForest (Figure 3). These results confirm that SynKGen is a superior solution, as it not 

only increases precision but also enhances the models' ability to handle class imbalance. 

Therefore, it emerges as a promising alternative for data augmentation and improving credit card 

fraud detection in the banking sector. 

 

Figure 3. Performance of the RandomForest classifier on confusion matrix metrics with and without data 

augmentation 

Additionally, a comparison of data augmentation techniques was conducted using the F1-Score 

metric as the dependent variable, with the implemented classifiers evaluated through cross-

validation (k = 5). A two-way ANOVA revealed that the augmentation technique (F = 2.00e+06, p < 

0.001, η² = 0.9999), the classifier (F = 4.64e+04, p < 0.001, η² = 0.9995), and their interaction (F = 

6.70e+03, p < 0.001, η² = 0.9989) all had highly significant effects on the dependent variable. Since 

the residuals did not meet the normality assumption (Shapiro-Wilk p < 0.001), a Friedman test 

was applied, confirming significant differences between groups (p < 0.001). Subsequently, Dunn’s 

post-hoc test with Holm correction was performed, identifying that SynKGen showed significant 
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differences compared to SMOTE (p = 0.0019) and ADASYN (p = 0.0015), while no significant 

differences were found between SMOTE and ADASYN (p = 0.8563). These findings indicate that 

the use of SynKGen significantly contributes to improving model performance compared to 

traditional oversampling techniques (Figure 4). 

 

Figure 4. Impact of data augmentation techniques and classifiers on F1-Score using two-way ANOVA and Post-Hoc 

Dunn analysis 

In Table 8, the results of the comparative analysis of the proposed method with other studies are 

presented. The proposed RandomForest-SynKGen and VotingClassifier-SynKGen model stands out 

with exceptional performance, achieving 100% precision and an F1-Score of 0.9949, indicators 

that considerably surpass traditional methods. While more advanced approaches like Bi-3DQRNN-

PoV and Structured Data Transformer (SDT) show competitive results with accuracies above 97%, 

they fail to match the effectiveness of the proposed method in terms of overall balance. The high 

AUC value (0.9949) and MCC (0.99) of the proposed model suggest an out-standing ability to 

distinguish between legitimate and fraudulent transactions, over-coming the limitations of 

previous models such as AllKNN-CatBoost which, despite its high accuracy (0.9996), shows a low 

recall (0.9591), indicating poor detection of positive cases, and even more so when evaluating the 

F1-Score (0.874). The proposed method represents a significant step in the fight against financial 

fraud, providing a more reliable and accurate tool for financial institutions.  

Table 8. Comparison of the results obtained with other studies.  

Ref Approach Accuracy Precision Recall F1-Score AUC MCC 

(Alfaiz & Fati, 2022) AllKNN-CatBoost 0.9996 0.8028 0.9591 0.8740 0.9790 - 

(Rb & Kr, 2021) 
SVM 0.9349 0.9743 0.8976 - - - 
KNN 0.9982 0.7142 0.0393 - - - 
ANN 0.9992 0.8115 0.7619 - - - 

(Ranganatha & Syed, 
2025) 

Bi-3DQRNN-PoV 0.9710 0.9700 0.9800 - - - 

(Ileberi & Sun, 2024) 
Proposed stacking 

Ensemble 
- 0.9890 - 0.9750 0.9720 - 

Proposed DL ensemble - 0.9650 - 0.9410 0.9200 - 

(Tang & Liu, 2024) 
Transformador de Datos 
Estructurados (SDT) y 
aprendizaje federado 

0.9970 0.9610 0.7340 0.7540 0.9940 - 

(Le et al., 2024) Efficient KAN - - - - 0.9900 - 
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(Adil et al., 2024) 
Optimized Deep Event-

based Network 
(OptDevNet) 

0.9989 - - 0.9980 - - 

(Coello et al., 2023) 

ADASYN-RandomForest - - - 0.8677 0.9900 - 
Random Over-sampling - 

XGBoost 
- - - 0.9800 0.8470 - 

ADASYB-DecisionTree - - - 0.9600 0.7640 - 
(Mondal et al., 2021) Ensemble model +GAN - 0.9800 0.9000 - 0.9800 - 

(Zhao et al., 2024) CB-CHL-LGBM - 0.6720 - 0.8280 0.9970 0.7640 

Our study 

RandomForest-
SynKGen/ 

VotingClassifier-
SynKGen 

0.9949 1.0000 0.9899 0.9949 0.9949 0.9900 

CONCLUSIONS  

This study has demonstrated that, despite the advancements in various credit card fraud detection 

techniques implemented in the different studies analyzed, such as the use of deep neural networks, 

machine learning algorithms, and hybrid methods, significant limitations persist that affect the 

performance of these techniques in ad-dressing this problem. These limitations are particularly 

noticeable in scenarios with pronounced data imbalance and when greater generalization capacity 

is required to detect emerging fraud patterns. 

To address these limitations, a new method called SynKGen was proposed, and its performance 

was comparatively evaluated against traditional oversampling techniques such as ADASYN and 

SMOTE. Experimental results show a significant improvement in the performance of the 

implemented classifiers, achieving metrics above 0.99. SynKGen represents an innovative and 

effective solution for handling data im-balance, substantially improving accuracy in credit card 

fraud detection. 

However, for this model to be viable in production environments, it is essential to consider its 

integration into real-time fraud detection systems, particularly its ability to generate synthetic 

samples efficiently and adaptively as transactions are processed. Preliminary tests suggest that 

SynKGen can be implemented as a preprocessing module in existing machine learning pipelines 

used by financial institutions, provided adequate computational resources and batch-processing 

strategies are employed. 

It is important to note that the proposed SynKGen method requires various tests to optimize the 

configuration of the parameters used until a better representation of the original dataset is 

achieved, such as the type of kernel used (kernel="linear"), the number of components 

(n_components=8), the alpha value (0.01), and the number of neighbors (n_neighbors=5). This 

could be a limitation compared to other evaluated methods; however, it could be overcome by 

using hyperparameter optimization techniques. 

For future research, it is recommended to explore the application of the proposed method on other 

datasets, as well as its implementation with other classifiers or more advanced methods like 

convolutional neural networks. Additionally, it would be beneficial to investigate the application 

of real-time models and their ability to adapt to new fraud strategies as they emerge. Collaboration 

between financial and academic institutions is of great importance, as it could facilitate access to 

more diverse and up-dated datasets, contributing to improving the accuracy and effectiveness of 

credit card fraud detection models. 
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