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ABSTRACT 

The use of machine learning methods in fiber-optic information transmission systems (FOITS) is considered. The 

article discusses the basic operating principles of fiber optic systems and the problems they face, such as noise, 

nonlinear effects, and degradation of transmitted information. Describes various machine learning techniques used in 

FOITS to control and monitor performance, prevent intelligent decisions, and suppress nonlinear fiber optic noise. 

Approaches used in machine learning are presented, such as neural networks, classification and regression algorithms, 

their application in the analysis and optimization of FOITS, such as neural networks, support vector machines, 

classification and regression algorithms, their application in the analysis and optimization of fiber optic systems. This 

paper proposes a method for monitoring performance and predicting failures in optical networks based on machine 

learning. The results obtained allow us to draw conclusions about the most effective methods for predic ting failures, 

which is of great practical importance for ensuring the reliability of communication networks and minimizing 

downtime. 

Keywords: extra tree regressor; failure prediction; machine learning; random forest; regression algorithms; support 

vector regression 

RESUMEN 

Se considera el uso de me todos de aprendizaje automa tico en sistemas de transmisio n de informacio n por fibra o ptica 

(FOITS). El artí culo analiza los principios ba sicos de funcionamiento de los sistemas de fibra o ptica y los problemas 

que enfrentan, como el ruido, los efectos no lineales y la degradacio n de la informacio n transmitida. Describe diversas 

te cnicas de aprendizaje automa tico utilizadas en FOITS para controlar y supervisar el rendimiento, prevenir decisiones 

inteligentes y suprimir el ruido no lineal en la fibra o ptica. Se presentan enfoques utilizados en aprendizaje automa tico, 

como redes neuronales, algoritmos de clasificacio n y regresio n, y su aplicacio n en el ana lisis y la optimizacio n de FOITS. 

Este artí culo propone un me todo para supervisar el rendimiento y predecir fallos en redes o pticas basado en 

aprendizaje automa tico. Los resultados obtenidos permiten extraer conclusiones sobre los me todos ma s eficaces para 

predecir fallos, lo cual es de gran importancia pra ctica para garantizar la fiabil idad de las redes de comunicacio n y 

minimizar el tiempo de inactividad. 

Palabras clave: algoritmos de regresio n; aprendizaje automa tico; bosque aleatorio; prediccio n de fallos; regresio n de 

vectores de soporte; regresor de a rbol extra 
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1. INTRODUCTION  

The FOITS is a set of optical transmission lines and optical devices designed for the formation, 

processing and transmission of optical signals, the function of which is to transmit the signal with 

high reliability and accuracy. 

Currently, FOITS operate at high speed and with large traffic. Analysis shows that backbone 

networks in fiber optic communication systems are growing exponentially at a rate of 30-60% per 

year and are expected to continue to grow (Gordienko et al., 2016). 

Optical networks can cause serious consequences when they fail, such as data loss, computing 

problems, and blocking information transfer. Therefore, failure management in optical networks 

is necessary to ensure stable operation, maintain high levels of service and quickly recover from 

failures.  

Reliability is described as the ability of a system or component to perform specified functions, 

maintaining its characteristics for a specified time within the established norms of the value of 

functional parameters while observing operating modes, rules for maintenance, storage and 

transportation (Senior, 2008; Berghmans et al., 2008; Nazarov et al., 2021). In FOITS, reliability is 

the ability of a system to transmit data with minimal losses, without failures and failures, to ensure 

stable operation of telecommunications services. Reliability forecasting allows you to determine 

the requirements for redundancy, assess the ability of the network to maintain reliability in 

extreme conditions and assess the impact of changes on the entire network.  

With the expansion of the Internet, a growing number of services require extensive data transfer 

within optical networks. Failures in these networks can lead to significant data loss. To mitigate 

such losses, various optical network protection algorithms have been developed, such as shared-

path protection, best-effort shared risk link group failure protection, among others. However, these 

algorithms primarily focus on reacting to failures, offering protection and reducing damage only 

after a failure has occurred. As a result, data loss still occurs due to the time delay involved in 

protection and recovery. 

Therefore, early warning and proactive protection are necessary. Some studies have proposed risk 

models that reroute high-risk services to lower-risk paths to prevent damage from potential 

failures in optical backbone networks (Dikbiyik et al., 2014). Other research has introduced risk-

aware models aimed at preventing data loss in data center networks (Weigang et al., 2016). 

Additionally, k-edge and k-node models have been developed to protect optical mesh networks and 

data center networks from multiple failures, such as those caused by disasters, major power 

outages, or large-scale attacks (Huang et al., 2016). While these approaches offer ways to switch 

services or back up data when a risk is identified for a particular link or node (primarily in disaster 

or attack scenarios), they often do not focus on forecasting risks. There is still a need for effective 

methods to predict equipment failures in optical networks and take protective measures before a 

failure occurs. By anticipating equipment failures in everyday operations, the protection strategies 

based on risk-aware models could be adapted to address routine equipment faults, resulting in a 

more resilient optical network and significantly enhancing the user quality of experience (QoE).  

Recent publications have demonstrated various approaches to reducing nonlinear phase noise, 

addressing system impairments in fiber communications, monitoring optical performance, and 

performing data detection in visible light communications. Given that failure prediction is an 
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estimation problem and operating data contain inherent relationships, machine learning is well-

suited for addressing this challenge. Researchers believe that this advanced technology holds 

significant potential for effective optical network failure prediction. However, as far as we know, 

machine learning algorithms have not yet been applied to predicting failures in optical network 

equipment.  

2. MATERIALS AND METHODS 

Classification of failures in FOITS in accordance with their causes are shown in Table 1 (Rausand 

et al., 2020). 

Table 1. Classification of failures in FOITS 

Types of failures Causes Manifestation 

Constructive Failures 
 

Imperfect design due to the use of 
outdated technologies; failure to consider 
specific operating conditions; violation of 
design and construction standards 

Incorrect selection of fiber diameter,  
insufficient shielding from interference,  
errors in cable route design, uneven 
signal distribution, insufficient 
protection of amplifiers from external  
influences 

Manufacturing failures 
 

Process irregularities such as poor-quali ty  
control in production, material defects ,  
component assembly errors 

Formation of microcracks in optical 
fiber, core curvature, deviations in 
cladding geometry, presence of 
impurities or contamination in fiber 
material, defects in welded joints 

Operational failures 
 

Violation of established rules and 
operating conditions for fiber-optic  
information transmission systems 
 

Cable damage due to excessive bending,  
poor quality connections, mechanical  
damage during installation,  
contamination of connectors, signal 
degradation due to insufficient optical 
power 

Degradational failures  
Aging of materials under the influence of 
temperature, humidity, radiation; natural  
wear and tear. 

Gradual decrease in fiber transparency ,  
deterioration of coating characteristics ,  
decomposition of adhesive joints, loss of 
shell strength, appearance of 
microcracks, deterioration of the 
transmission characteristics of the 
system over time 

The analysis showed that the main causes of failures in FOITS are mechanical damage, thermal 

effects, moisture and water damage, electromagnetic interference, connector and connection 

problems, equipment problems, natural disasters and power supply failures. Also, failures in fiber 

optic communication systems can vary depending on many factors such as network type, 

geographic location, operating conditions, etc. 

Destabilizing factors on telecommunication networks during the year is shown in Figure 1  

(Xujamatov, 2024). 
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Figure 1. Destabilizing factors affecting the performance of telecommunication networks  

To improve the performance and efficiency of FOITS, it is necessary to ensure the reliability of all 

its components, including methods for diagnosing elements and assemblies (Wang et al., 2021b; 

Davronbekov et al., 2014). The use of optical amplifiers helps to linearize the spectral 

characteristics of the system, which increases the length of the regeneration section and, thus, 

increases the reliability of data transmission over optical fiber (Davronbekov, 2016; Hakimov & 

Davronbekov, 2007). 

The use of optical amplifiers and fiber lasers doped with rare earth ions increases the gap between 

regeneration points, reduces the need for additional amplifiers and regeneration equipment, 

which leads to an increase in the likelihood of failure-free operation of FOITS (Davronbekov & 

Juraeva, 2022; Davronbekov & Juraeva, 2023). 

Conventional fault management techniques are based on threshold methods or statistical 

probability models, but they are limited in addressing complex and dynamic scenarios. The 

application of artificial intelligence for traffic forecasting, topology design, route calculation, 

distribution and fault management in optical networks is of paramount importance to ensure their 

reliability and stability. These methods are based on machine learning algorithms that are selected 

and modified for different failure modes according to the data and model objectives (Wang et al., 

2021a). 

Machine learning (ML) is a key area of artificial intelligence where systems can extract patterns 

from data, learn from them, and make decisions with minimal human intervention (Gu et al., 

2020). To predict failures, it is important to monitor the status of the light path and optical 

components and then switch to the backup channel in advance to prevent failure.  

An estimate of transmission quality and an estimate of the bit error rate can be used to predict 

light path failures (Lu et al., 2021). Assessing light path quality before deployment helps optimize 

optical network design and planning. Machine learning models are widely used to evaluate service 

quality. They are usually more robust to parameter uncertainties and require less computational 

resources than analytical models. 

ML algorithms aim to extract information from data based on its characteristics, often called 

attributes or features. ML methods can be classified into the following categories (Musumeci et al., 

2019): 
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- Supervised machine learning, which uses labeled data, where there is a historical set of input 

data (features) and corresponding output data. Problems can be either regression (for continuous 

values) or classification (for discrete values). 

- Unsupervised machine learning, in which data is not labeled. Tasks include clustering 

(identifying similarities between data) and anomaly detection (identifying deviations in data).  

- Semi-supervised machine learning, a combination of supervised and unsupervised approaches, 

is used in problems with partial data labeling. 

- Reinforcement learning, the agent interacts with the environment to maximize the reward 

received for actions over time, learning from feedback. 

Based on data on the number of failures, failure times and failure recovery times, the problem of 

predicting failures in FOITS is mainly reduced to a regression problem, since it is necessary to 

predict a continuous value, in particular the time until the next failure or the recovery time after a 

failure. For this reason, this work analyzes the algorithms that were used to predict failures in 

fiber-optic lines. 

SVM (Support Vector Machine) is basically a binary classification algorithm that identifies support 

vectors from training data and uses them to construct a decision function. The data received from 

the optical network operator is divided into two groups: equipment failure data and normal data.  

After the feature transformation, special attention is paid to finding the hyperplane that is 

optimally distant from the class boundary points in the data, which is the key focus of the 

algorithm. In the process of generating points from two probability density functions, the search 

for a hyperplane is associated with the determination of a decision boundary tending to maximum 

similarity (Khan et al., 2022).  

SVM searches for an optimal separating hyperplane that maximizes the distance between the 

closest points of different classes, called support vectors.  

The SVM algorithm is an efficient and accurate classification tool, especially when data is limited, 

making it attractive for WDM optical network applications. 

Unlike classification, which uses SVM algorithms, Support Vector Regression (SVR) is a machine 

learning method used for regression analysis. The main goal of SVR is to find a function that 

approximates the relationship between input variables and a continuous target variable while 

minimizing the prediction error.  

SVR seeks to find the hyperplane that best fits data points in continuous space. To do this, the input 

variables are mapped into a multidimensional feature space, where a hyperplane is searched in 

such a way as to maximize the distance between the hyperplane and the nearest data points, as 

well as minimize the prediction error.  

SVR is capable of handling non-linear relationships between variables by using a kernel function 

to transform data into multidimensional space. This makes it a powerful tool for solving regression 

problems, especially in cases where there are complex relationships between the input variables 

and the target variable. 

Linear regression is one of the most popular regression analysis methods, often used in predictive 

modeling projects. This is the simplest type of regression and can be used both to work with a 
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single predictor (variable), called simple linear regression, and to work with multiple predictors, 

called multiple linear regression.  

The essence of linear regression is to use linear functions to predict values based on the data 

available in the model (Saleh & Layous, 2022). Linear models are simple parametric methods that 

can be effectively applied to many problems, even when the data has significant nonlinearities.  

The Random Forest algorithm is a widely used machine learning technique used for both 

classification and regression. It is based on the concept of ensembles of decision trees, where the 

diversity of models is increased by randomly sampling features at each node.  

The process of constructing decision trees in a random forest involves selecting the best feature 

to split at each node. However, it is randomized by selecting a random subset of features and then 

selecting the best one. This allows you to increase the diversity of trees and improve the 

generalization ability of the model. 

The advantages of Random Forest include good generalization ability, the ability to handle large 

volumes of features and data, and automatic detection and removal of noise and anomalies. This 

algorithm can be used, for example, to identify the causes of failures in optical networks or to 

predict future values of network parameters for the purpose of early detection of possible failures 

(Arau jo et al., 2023). 

The ExtRa-Trees algorithm is an ensemble learning method that combines the concept of random 

forests with additional randomness in the selection of split points. Unlike conventional random 

forests, ExtRa-Trees uses all the training data and randomly selects features and split points for 

each tree. This helps reduce overfitting and increase model diversity. As a result, ExtRa-Trees 

provides a reliable and accurate regression model with a small amount of computation (Geurts 

et al., 2006). 

 
Figure 2. ExtRa-Trees algorithm structure for regression problems  

Extra-Trees, unlike random forest, uses random subsets to train base models and combines data 

to predict outcomes. However, its special feature is that it selects the best feature through random 
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node splitting and has a structure that includes several decision trees. Each tree consists of a root 

node, split nodes, and leaf nodes. When analyzing data, the algorithm splits it into random subsets 

of objects at the root node, treating each subset as a split/child node (Figure. 2).  The splitting 

process continues until the end node is reached. For each tree, outcome predictions are calculated 

and then combined across different trees. The predictions of each tree are combined to produce a 

final prediction based on the majority vote in classification problems and the arithmetic mean in 

regression problems (Tran et al., 2023). 

The data was predicted by comparing performance estimates using metrics such as RMSE (Root 

Mean Squared Error) and R2 - coefficient of determination, the formulas for which can be 

presented as follows (Davronbekov et al., 2024): 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊− 𝒚𝒊)

𝟐𝒏
𝒊=𝟏      (1) 

where n - number of observations, ˆ iy - model-predicted value of the dependent variable, iy - 

actual value of the dependent variable. 

𝑹𝟐 = 𝟏 −
∑ (�̂�𝒊−𝒚𝒊)

𝟐𝒏
𝒊=𝟏

∑ (�̄�𝒊−𝒚𝒊)
𝟐𝒏

𝒊=𝟏
      (2) 

where �̄� =
1

𝑙
∑ 𝑦𝑖
𝑙
𝑖=1  - mean value of the target variable. 

3. RESULTS AND DISCUSSION 

Based on statistical data on the number of failures and recovery times in fiber -optic transmission 

networks, the possibility of predicting, preventing possible failures and, as a result, increasing the 

reliability of the network based on machine learning algorithms is considered. After the extensive 

collection of the data for a span of 4 years, data collection quality is examined and the linearity is 

found in the continuity as well as in the failure time. Through an extensive choice of machine 

learning algorithms, Linear regression algorithm was selected to develop a model or predicting 

failures (Weigang et al., 2016). For extra comparisons, other traditional machine learning models 

like SVR, Random Forest, ExtRa-Trees regressor, MLP regressor, Gradient Descent were 

developed and checked for predictability performance. 

 
Figure 3. Histogram indicates the failure time occurrences with the recorded failure time in minute 
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According to the collected data (Figure.3), the highest failure accoracnce were collected through 

189 to 350 minute range.  As can be clearly seen from the histogram Figure 3, the most frequent 

failure times were between 180 and 500 minutes.  

The collected data included the collection time, failure time, the continuity of the failure, the 

number of failures as well as the month of the failure. Depending on the distribution of the data, 

some of the outliers above 600 interruptions were cleaned and the rest of the data were fed into 

the Linear Regression model to make predictions. After building the machine learning models. 

 
Figure 4. The predicted values of RMSE accuracy and R squared recovery  

Linear Regression model showed the best RMSE accuracy with 91% and the least recovery R 

squared value. Extra Tree Regressor machine learning model indicated the highest recovery R 

squared value with 28% and 82% RMSE accuracy. The other ML models performed almost 

similarly with Extra Tree Regressor model with being around 80% of RMSE accuracy and 20% of 

Recovery R squared value (Figure.4) and in table 2 the overall RMSE accuracy as well as the R-

squared values are presented. 

Table 2. Comparative accuracy of ML models by RMSE and R-squared values 

 
LineaR 

Regression 
SVR Random Forest 

Extra Tree 
Regressor 

Gradient 
Descent 

Regressor 
MLP Regressor 

RMSE 92% 78% 80% 82% 79% 78% 
R-squared 
value 

18% 18% 28% 28% 28% 26% 

After some predictions, the developed ML models showed relatively good results with the failure time as 

well (Figure 5). 

 
Figure 5. Results of developed ML model compared to the ground truth failure time 

Value

s 

Models 
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The Figure. 5 shows the results of predicted values of the data and the ground truth for the failures 

and continuity of the failures at a given time period. Developed machine learning algorithm 

accurately confirms the predictability of the failures in the process with the correct backing fa ilure 

continuity time. 

CONCLUSIONS  

Extensive data on the times and dates of failures has been successfully used to create machine 

learning models that can predict when failures will occur with high accuracy. After building the 

machine learning models, it was found that the linear regression model showed the best accuracy, 

expressed in the value of RMSE (root mean square error) - 91%, with the lowest value of R-squared 

recovery. The Extra Tree Regressor machine learning model showed the highest recovery R-

squared value of 28% and RMSE of 82%. Other machine learning models also performed well, with 

an accuracy of about 80% for RMSE and 20% for R-squared recovery. 

The developed machine learning models showed relatively good results in predicting the timing of 

failures. Thus, the results of the study indicate the potential of using machine learning models to 

predict failure timing, which can be useful for optimizing maintenance processes and preventing 

failures. 
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