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ABSTRACT 

The increasing complexity of IT management and the need to monitor critical infrastructure metrics, such as CPU usage, 

memory, storage, and service logs, detect failures, and respond quickly to alerts, imply the adoption of advanced technologie s 

that enable comprehensive monitoring and efficient response. This work developed a server monitoring system with alerts 

sent via Telegram. Additionally, it integrates artificial intelligence to provide immediate solutions to server incidents, us ing 

tools such as Grafana and Prometheus for metric collection and Grafana Loki for log management. The OpenAI API was 

incorporated to analyze the logs and enhance alerts with a detailed diagnosis. A total of 311 tests were conducted, where the  

results showed that the system notified incidents in an average of 1.02 seconds, while the GPT model completed the analysis 

in an average of 2.17 seconds, allowing root causes of problems to be identified and timely recommendations for resolution 

to be generated. It is concluded that the integration of artificial intelligence and proactive monitoring improves incident 

management, suggesting future applications in IoT environments to enrich monitoring. 
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RESUMEN 

La creciente complejidad en la gestio n de TI y la necesidad de monitorear me tricas crí ticas de infraestructura, como uso de 

CPU, memoria, almacenamiento y logs de servicios, detectar fallas y responder ra pidamente a alertas, implican la adopcio n 

de tecnologí as avanzadas que permitan una supervisio n integral y una respuesta eficiente. El presente trabajo desarrollo  un 

sistema de monitoreo de servidores con alertas enviadas mediante Telegram. Adema s, integra inteligencia artificial para 

proporcionar soluciones inmediatas a los incidentes en los servidores, utilizando herramientas como Grafana y Prometheus 

para la recoleccio n de me tricas, y Grafana Loki para la gestio n de logs. La API de OpenAI se incorporo  para analizar los 

registros y enriquecer las alertas con un diagno stico detallado. En total se realizaron 311 pruebas, donde los resultados 

mostraron que el sistema notifico  las incidencias en un promedio de 1,02 segundos, mientras que el modelo GPT completo  el 

ana lisis en 2,17 segundos en promedio, permitiendo identificar causas raí z de los problemas y generar recomendaciones 

oportunas para su resolucio n. Se concluye que la integracio n de inteligencia artificial y monitoreo proactivo mejora la gestio n 

de incidentes, sugiriendo futuras aplicaciones en entornos IoT para enriquecer la supervisio n. 
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1. INTRODUCTION  

Monitoring platforms play an important role in the control, management, and optimization of 

technological resources. The growing complexity of IT services due to virtualization, cloud 

computing, Big Data, and microservices has created a need for constant improvement in 

monitoring and alert management to maintain stable operations (Yu et al., 2024). Different IT 

management and governance frameworks such as TOGAF or ITIL version 4 place special emphasis 

on monitoring because it is a practice that enables IT capacity management by defining baselines 

for resources and tracking them throughout their lifecycle within the IT architectures proposed by 

each framework (Santosa & Mulyana, 2023). Additionally, it's not just about collecting random 

data, but also considering data quality for proper use in monitoring (Ehrlinger & Wo ß, 2022).  

The diversity of services to evaluate, such as infrastructure, networks, databases, operating 

systems, IoT sensors, among others, has posed a significant challenge, leading to the development 

of specialized monitoring systems for each type of device. For example, Sun et al. (2020) 

implemented a surveillance system for cloud clusters, tracking resources such as CPU, RAM, and 

web service logs. 

The variety of situations in IT monitoring implies the existence of non-uniform data and difficulty 

in finding patterns in logs or alert bodies. Therefore, tools have been created in recent years to 

facilitate the capture of relevant information in alerts to understand the cause of incidents and the 

possibility of predicting risk based on them, with artificial intelligence being one of the most 

adopted technologies to effectively solve this problem (Ahmed et al., 2022). 

Machine learning, large language models, or pre-trained natural language models are applied in 

the constant monitoring of IT infrastructure. Bhanage et al. (2023) analyze software event logs 

from web servers and operating systems for fault detection using the pre-trained BERT model, 

showing high performance in correctly detecting event content despite the different formats 

handled by each system. Similarly, Kuang et al. (2024) performed alert content analysis using pre -

trained models and their own hybrid model COLA, obtaining the context of an alert dataset in less 

than 10 seconds, which the authors consider as the maximum time for production deployment.  

Additionally, there is a growing trend of integrating instant messaging with monitoring or 

supervision systems for real-time alert notifications, improving operator response capability 

(Penkov & Taneva, 2021), such as the monitoring system developed by Butarbutar et al. (2023), 

which implemented an interactive Telegram bot for receiving alerts. 

Given the above, the question arises: How can a system monitoring platform that integrates 

artificial intelligence support incident response in servers? To answer this question, the general 

objective was to develop a system monitoring platform that integrates artificial intelligence to 

explore its applicability in server incident response. The specific objectives were: (i) design a 

monitoring system that integrates artificial intelligence for the detection and analysis of server 

incidents, (ii) evaluate the response times of alerts sent through messaging applications, and (iii) 

evaluate the response time of the GPT model for incident tracking and log analysis.  

2. MATERIALS AND METHODS 

The study was conducted in a cloud environment using a set of 4 instances deployed on Google 

Cloud Platform's Compute Engine. The research was of a non-experimental descriptive type with 
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a transactional design. For the statistical analysis of incident response, descriptive analysis of 

mean, maximum, and minimum values of the collected data was applied. A total of 311 alert 

records were collected and stored in a database. Regarding the monitoring system, programming 

was used to collect response times for both the constructed system and the OpenAI model through 

the API. 

2.1. Software 

In the development of this platform, various software tools were used, which contributed to the 

construction of the monitoring system. Primarily, Grafana was used, which is an open-source 

platform designed for creating interactive graphs and dashboards and is widely used in 

applications that seek to display real-time data (Broniewski et al., 2023). Additionally, it is a highly 

valued tool for its ability to integrate with multiple data sources, as its flexibility and ease of 

extension make it suitable for a wide range of applications, from deployment infrastructure 

monitoring to Internet of Things solutions (Anam et al., 2023; Hadikusuma et al., 2023). 

Among the most common integrations in monitoring systems are Node Exporter, Grafana Loki, and 

Prometheus (Chan et al., 2022). Node Exporter is an exporter for Prometheus that collects 

operating system metrics, such as CPU, memory, and disk usage. Grafana Loki is a log management 

solution, designed to work efficiently with large volumes of log data (Simili et al., 2021). Its query 

language, LogQL, allows users to perform quick searches and precise filtering of logs. 

Prometheus, on the other hand, is an open-source monitoring and alerting system that collects 

metrics from systems and services. It stands out for its ability to collect and store metrics from 

instrumented services in a time-series database (Erdei & Toka, 2023). For this purpose, it uses 

PromQL, a specialized query language for data extraction and alert creation based on specific 

metrics (Adamyaa et al., 2022). 

APIs are interfaces that allow the integration of multiple pre-existing functionalities for 

developers, facilitating communication between different software modules (Lamothe et al., 

2021). There are various APIs with multiple purposes; in this research, integration was carried out 

with the OpenAI API, which provides a series of models with multiple purposes, from chatbot 

creation through natural language processing (NLP) to image generation (Santoso et al., 2023). 

The Telegram API, for its part, facilitates the integration of real-time messaging services, allowing 

for notification sending and user interaction through messages for the creation of systems with 

specific purposes (Alia et al., 2024). 

2.2. Architecture design 

The proposed architecture, as illustrated in Figure 1, consists of establishing a central server 

responsible for monitoring the status and performance of the rest of the organization's servers. 

Using Prometheus, metrics from each server will be stored, which will be collected through Node 

Exporter, an agent that exposes basic operating system statistics. These metrics were useful for 

evaluating performance, detecting possible anomalies in resource usage (such as CPU, memory, 

and disk), and anticipating failures before they affect normal service operation. With this 

information, it will be possible to implement real-time alert strategies and proactively optimize 

the infrastructure. 

Grafana Agent was used to send logs to Grafana Loki, installed on the central server. These logs 

detailed events and activities on each monitored server. By centralizing logs in Loki, performance 
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metrics could be correlated with specific events, identifying the root cause of problems such as 

bottlenecks, service failures, or anomalous behaviors. Additionally, log analysis enriched the alerts 

through the OpenAI model, providing a complete view of the infrastructure's state. 

 
Figure 1. AI-integrated monitoring system architecture 

The integration of these tools allows teams to obtain detailed information about the status and 

performance of their microservices, quickly detect errors, and ensure optimal functioning of the 

architecture (Jani, 2024). 

2.3. Alert system 

Grafana offers a configurable alert system based on defined rules for both logs and server metrics. 

These alerts are triggered when certain indicator values exceed established thresholds, allowing 

for a quick response to possible incidents. For this research, the following alerts have been been 

considered: 

Table 1. Alert rules configured for server monitoring  

Alert name Summary Condition/Threshold 
Evaluation 
Frequency 

CPU Usage CPU usage is over 90% 
CPU > 90% 
for 10 sec 

Every 1 min 

RAM Usage 
RAM usage is over 

90% 
Memory > 95% 

for 10 sec 
Every 1 min 

Server Down Detection 
Instance has recently 

shut down 
Instance state < 0.5 Every 1 min 

SSH Authentication 
Failure 

More than 4 SSH 
authentication failures 
have been detected on 
the server in the last 

10 minutes 

More than 4 failed attempts 
since last 10 minutes 

Every 1 min 
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When any of the previously configured conditions are met, an event is generated and sent to the 

webhook programmed in the API. This webhook is responsible for interacting with the Telegram 

API to immediately notify all administrators through their mobile devices about the occurred 

event. In parallel, the logs are analyzed through the OpenAI API, with the aim of automatically 

diagnosing the root cause of the problem. The analysis results are also sent to administrators 

through Telegram, providing useful and detailed information so they can take immediate 

corrective actions. 

2.4. Development framework 

Scrum is an agile framework for project management based on collaboration, self-organization, 

and delivery of functional products in incremental iterations (Sassa et al., 2023). It operates 

through sprints, which consist of time-boxed planned events. As illustrated in Figure 2, it 

encompasses four events during development, whose fulfillment, according to the Scrum guide, 

influences the perception of project success (Kadenic et al., 2023): Sprint Planning, where the team 

defines what work will be done during the sprint and how it will be achieved; Daily Scrum, a brief 

daily meeting to synchronize activities and plan the next 24 hours; Sprint Review, where 

completed work is presented at the end of the sprint and feedback is received from stakeholders; 

and Sprint Retrospective, a meeting to reflect on the sprint and improve future iterations (Behutiye 

et al., 2024; Sassa et al., 2023). 

Additionally, these events are supported by Scrum artifacts, which are essential in the success of 

agile software development, where the Product Backlog is a prioritized list of all work needed in 

the project, managed by the Product Owner. The Sprint Backlog is a subset of the Product Backlog 

that the development team commits to completing during a specific sprint (Garcia et al., 2021). 

Finally, the Burndown Chart is a visual tool that shows the team's progress toward completing 

work in the sprint (Ghimire & Charters, 2022). 

 
Figure 2. Scrum life cycle by Sassa et al. (2023) 
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To obtain a clear initial vision of the project, user stories were listed and an estimated Product 

Backlog was created to guide the development of the monitoring system. According to Table 1, 20 

user story points were estimated to be completed in 14.5 days. 

Table 2. Estimated Product Backlog 

Sprint #US Description Size Points 
Time 

(days) 

First 
Sprint 

US1 
Collect performance metrics (CPU, memory, disk, 
and network) from each server using 
Prometheus and Node Exporter. 

XS 1 1 

US2 
Collect logs from all servers using Grafana Loki 

for event analysis on the servers. 
XS 1 1 

US3 
Develop a dashboard to monitor Prometheus  

performance metrics in real-time. 
M 3 2 

Second 
Sprint 

US4 
Develop a dashboard to monitor system logs 
from the servers in real-time. 

M 3 2 

US5 
Configure alerts to automatically notify when 

servers exceed resource usage thresholds. 
S 2 1.5 

US6 

Configure alerts based on log analysis to 

automatically notify unusual behaviors on the 

servers. 

S 2 1.5 

 US7 
Send resource usage alerts to organization users  
via Telegram. 

L 5 3 

Third 
Sprint 

US9 
Send log analysis-based alerts to organization 
users via Telegram. 

XS 1 1 

US10 
Integrate an OpenAI model into the alerts to 
provide detailed tracking of possible causes and 
action suggestions. 

S 2 1.5 

User Story Points / Estimated Time 20 14.5 

3. RESULTS AND DISCUSSION 

3.1. Metrics and Logs Visualization 

The system allows visualizing resource usage metrics in the different servers connected in real 

time through Grafana, integrating the data coming from Prometheus and Node Exporter. As shown 

in figure 3, the dashboard displays detailed information about the CPU, memory and storage usage 

of the servers. This integration aims to provide a continuous monitoring tool that is easy to manage 

without direct interaction with the servers. 

 
Figure 3. Resource usage dashboard in Grafana 
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The integration with Loki made it possible to collect and store the logs generated by the servers. 

Figure 4 shows how the logs were visualized in the Grafana dashboard, which allowed the 

operations team to access the events recorded in a defined time range. This functionality provides 

additional context to the analysis of unusual behavior and server interactions.  

 

Figure 4. Viewing logs through Loki in Grafana Dashboard 

3.2. Alert Configuration 

The system was configured to manage two types of alerts: resource usage alerts and alerts based 

on system logs. Figure 5 shows the control panel that allows tracking the status of the alerts. On 

the other hand, Figures 6 (a) and 6 (b) show alert messages that warn about excessive RAM and 

CPU resource usage analysis, together with a follow-up message, which is linked to the alert 

identifier previously received and provides information about the impact of the alert and 

suggestions for action, thus facilitating incident response. 

 
Figure 5. Alert management screen 
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Figure 6 (c) shows a similar dynamic, but displaying an alert related to logs, specifically 

unauthorized access attempts through the SSH service of a server. 

 
Figure 6. Receiving alerts and tracking via Telegram 

3.3. Evaluation of Alert Times and System Analysis 

A total of 311 tests were conducted, where the values illustrated in Table 3 were obtained. It can 

be observed that the average initial alert time was 1.02 seconds, indicating that, on average, the 

system took just over a second to generate an alert from the moment the alert condition was 

detected. 

Table 3. Evaluation of initial alert time 

Parameter Value (seg) 
Mean 1,02 

Maximum 1,97 

Minimum 0,70 

Similarly, Table 4 shows the evaluation of the response time of the gpt-4o-mini model when 

performing the analysis. The average response time was 2.17 seconds, indicating that, on average, 

the model takes just over two seconds to complete the data analysis. 

Table 4. Evaluation of GPT model response time in analysis  

Parameter Value (seg) 

Mean 2,17 
Maximum 8,85 
Minimum 1,13 

Finally, the analysis is sent once the alerts have been processed by the AI model. Similar to the 

initial alert time, the values remain low and with little variability, averaging 0.55 seconds, as shown 

in Table 5. 

Table 5. Evaluation of follow-up message sending time 

Parameter Value (seg) 
Mean 0.55 

Maximum 0.92 
Minimum 0.19 
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Figure 7 presents a summary of the values obtained in all the tests conducted for acknowledged 

time, completion time, and send analysis time. It can be observed that the alert sending times are 

consistently low and show little variability. However, the completion time shows greater 

variability, with significant peaks. 

 

Figure 7. Response times of AI-integrated monitoring system 

The monitoring system developed in this study incorporates tools for the detection and analysis 

of server incidents, complemented by an alert system through messaging applications. This 

approach reflects practices seen in previous studies, where solutions like Grafana and instant 

messaging applications, such as Telegram, have been implemented for sending automatic alerts 

(Butarbutar et al., 2023; Iqromullah et al., 2023). Additionally, the use of Prometheus for metric 

collection has been highlighted, allowing the creation of dashboards with real-time data updates 

for system monitoring (Gaol et al., 2022). 

Similarly, for effective server monitoring, it is essential to define critical monitoring points. 

Igromullah et al. (2023) and Sun et al. (2020) mention that the most common problems in servers 

include excessive resource usage, such as hard disk, memory saturation, and the interruption of 

essential services for the operation of applications, such as databases and other services.  

The evaluation of the initial alert time showed an average time of 1.02 seconds, with a result 

similar to the monitoring system of Sun et al. (2020), whose average was 8.79 seconds, both being 

quick in sending alerts. 

On the other hand, the evaluation of the response time of the GPT model used for the analysis 

presented an average time of 2.17 seconds. The models evaluated by Kuang et al. (2024) such as 

Alert Storm or LiDAR, analyzed an alert in an average time of 1.82 and 0.90 seconds respectively, 

being faster than GPT; however, according to the authors, a response time of less than 10 seconds 

by artificial intelligence models is acceptable for production. 

CONCLUSIONS 

This work has presented an approach for developing a system monitoring platform that integrates 

artificial intelligence, exploring its applicability in responding to server incidents. A system was 
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designed that incorporates artificial intelligence for the detection and analysis of server incidents, 

and the response times of alerts sent by the Telegram messaging application were evaluated, as 

well as the response time of the GPT model in incident tracking and log analysis. Out of a total of 

311 tests, the results indicate that the system can generate alerts with an average time of 1.02 

seconds and that the GPT model provides analysis with an average time of 2.17 seconds, adding 

value by offering better context and recommendations for the alerts. It is suggested that future 

research should focus on field studies in network operations centers to evaluate the effectiveness 

and adaptability of the platform in practical conditions. Additionally, it is recommended to explore 

integration with technologies such as the Internet of Things (IoT) to include physical monitoring, 

which could enrich incident management by covering both hardware and the operating 

environment.  
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