
 Rev. Cient. Sist. Inform. 5(2), e811, doi: 10.51252/rcsi.v5i2.811

Original article
Artí culo original

Jul-Dec, 2025 https://revistas.unsm.edu.pe/index.php/rcsi
e-ISSN: 2709-992X

© The authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Systems monitoring platform integrating artificial
intelligence for incident response in servers

Plataforma de monitoreo de sistemas integrando inteligencia artificial para
respuesta a incidentes en servidores

 Espinosa-Luna, Bruno Hiroshi1*

 Castillo-Oliva, Johann1

 García-Gutiérrez, Willy Francisco1

 Mendoza-de-los-Santos, Alberto1

1Universidad Nacional de Trujillo, Trujillo, Peru

Received: 17 Nov. 2024 | Accepted: 21 Mar. 2024 | Published: 20 Jul. 2025

Corresponding author*: t033300120@unitru.edu.pe

How to cite this article: Espinosa-Luna, B. H., Castillo-Oliva, J., Garcí a-Gutie rrez, W. F. & Mendoza-de-los-Santos, A. (2025). Systems monitoring
platform integrating artificial intelligence for incident response in servers. Revista Científica de Sistemas e Informática, 5(2), e811.
https://doi.org/10.51252/rcsi.v5i2.811

ABSTRACT

The increasing complexity of IT management and the need to monitor critical infrastructure metrics, such as CPU usage,

memory, storage, and service logs, detect failures, and respond quickly to alerts, imply the adoption of advanced technologie s

that enable comprehensive monitoring and efficient response. This work developed a server monitoring system with alerts

sent via Telegram. Additionally, it integrates artificial intelligence to provide immediate solutions to server incidents, us ing

tools such as Grafana and Prometheus for metric collection and Grafana Loki for log management. The OpenAI API was

incorporated to analyze the logs and enhance alerts with a detailed diagnosis. A total of 311 tests were conducted, where the

results showed that the system notified incidents in an average of 1.02 seconds, while the GPT model completed the analysis

in an average of 2.17 seconds, allowing root causes of problems to be identified and timely recommendations for resolution

to be generated. It is concluded that the integration of artificial intelligence and proactive monitoring improves incident

management, suggesting future applications in IoT environments to enrich monitoring.

Keywords: alerts; IT governance; Grafana; LLM; Loki; observability

RESUMEN

La creciente complejidad en la gestio n de TI y la necesidad de monitorear me tricas crí ticas de infraestructura, como uso de

CPU, memoria, almacenamiento y logs de servicios, detectar fallas y responder ra pidamente a alertas, implican la adopcio n

de tecnologí as avanzadas que permitan una supervisio n integral y una respuesta eficiente. El presente trabajo desarrollo un

sistema de monitoreo de servidores con alertas enviadas mediante Telegram. Adema s, integra inteligencia artificial para

proporcionar soluciones inmediatas a los incidentes en los servidores, utilizando herramientas como Grafana y Prometheus

para la recoleccio n de me tricas, y Grafana Loki para la gestio n de logs. La API de OpenAI se incorporo para analizar los

registros y enriquecer las alertas con un diagno stico detallado. En total se realizaron 311 pruebas, donde los resultados

mostraron que el sistema notifico las incidencias en un promedio de 1,02 segundos, mientras que el modelo GPT completo el

ana lisis en 2,17 segundos en promedio, permitiendo identificar causas raí z de los problemas y generar recomendaciones

oportunas para su resolucio n. Se concluye que la integracio n de inteligencia artificial y monitoreo proactivo mejora la gestio n

de incidentes, sugiriendo futuras aplicaciones en entornos IoT para enriquecer la supervisio n.

Palabras clave: alertas; gobierno de TI; Grafana; LLM; Loki; observabilidad

https://doi.org/10.51252/rcsi.v5i2.811
https://revistas.unsm.edu.pe/index.php/rcsi
https://portal.issn.org/resource/ISSN-L/2709-992X
mailto:t033300120@unitru.edu.pe
https://doi.org/10.51252/rcsi.v5i2.811
https://orcid.org/0009-0004-3676-1247
https://orcid.org/0009-0005-1268-6809
https://orcid.org/0000-0003-4186-6073
https://orcid.org/0000-0002-0469-915X

 Espinosa-Luna, et al.

2 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

1. INTRODUCTION

Monitoring platforms play an important role in the control, management, and optimization of

technological resources. The growing complexity of IT services due to virtualization, cloud

computing, Big Data, and microservices has created a need for constant improvement in

monitoring and alert management to maintain stable operations (Yu et al., 2024). Different IT

management and governance frameworks such as TOGAF or ITIL version 4 place special emphasis

on monitoring because it is a practice that enables IT capacity management by defining baselines

for resources and tracking them throughout their lifecycle within the IT architectures proposed by

each framework (Santosa & Mulyana, 2023). Additionally, it's not just about collecting random

data, but also considering data quality for proper use in monitoring (Ehrlinger & Wo ß, 2022).

The diversity of services to evaluate, such as infrastructure, networks, databases, operating

systems, IoT sensors, among others, has posed a significant challenge, leading to the development

of specialized monitoring systems for each type of device. For example, Sun et al. (2020)

implemented a surveillance system for cloud clusters, tracking resources such as CPU, RAM, and

web service logs.

The variety of situations in IT monitoring implies the existence of non-uniform data and difficulty

in finding patterns in logs or alert bodies. Therefore, tools have been created in recent years to

facilitate the capture of relevant information in alerts to understand the cause of incidents and the

possibility of predicting risk based on them, with artificial intelligence being one of the most

adopted technologies to effectively solve this problem (Ahmed et al., 2022).

Machine learning, large language models, or pre-trained natural language models are applied in

the constant monitoring of IT infrastructure. Bhanage et al. (2023) analyze software event logs

from web servers and operating systems for fault detection using the pre-trained BERT model,

showing high performance in correctly detecting event content despite the different formats

handled by each system. Similarly, Kuang et al. (2024) performed alert content analysis using pre -

trained models and their own hybrid model COLA, obtaining the context of an alert dataset in less

than 10 seconds, which the authors consider as the maximum time for production deployment.

Additionally, there is a growing trend of integrating instant messaging with monitoring or

supervision systems for real-time alert notifications, improving operator response capability

(Penkov & Taneva, 2021), such as the monitoring system developed by Butarbutar et al. (2023),

which implemented an interactive Telegram bot for receiving alerts.

Given the above, the question arises: How can a system monitoring platform that integrates

artificial intelligence support incident response in servers? To answer this question, the general

objective was to develop a system monitoring platform that integrates artificial intelligence to

explore its applicability in server incident response. The specific objectives were: (i) design a

monitoring system that integrates artificial intelligence for the detection and analysis of server

incidents, (ii) evaluate the response times of alerts sent through messaging applications, and (iii)

evaluate the response time of the GPT model for incident tracking and log analysis.

2. MATERIALS AND METHODS

The study was conducted in a cloud environment using a set of 4 instances deployed on Google

Cloud Platform's Compute Engine. The research was of a non-experimental descriptive type with

 Espinosa-Luna, et al.

3 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

a transactional design. For the statistical analysis of incident response, descriptive analysis of

mean, maximum, and minimum values of the collected data was applied. A total of 311 alert

records were collected and stored in a database. Regarding the monitoring system, programming

was used to collect response times for both the constructed system and the OpenAI model through

the API.

2.1. Software

In the development of this platform, various software tools were used, which contributed to the

construction of the monitoring system. Primarily, Grafana was used, which is an open-source

platform designed for creating interactive graphs and dashboards and is widely used in

applications that seek to display real-time data (Broniewski et al., 2023). Additionally, it is a highly

valued tool for its ability to integrate with multiple data sources, as its flexibility and ease of

extension make it suitable for a wide range of applications, from deployment infrastructure

monitoring to Internet of Things solutions (Anam et al., 2023; Hadikusuma et al., 2023).

Among the most common integrations in monitoring systems are Node Exporter, Grafana Loki, and

Prometheus (Chan et al., 2022). Node Exporter is an exporter for Prometheus that collects

operating system metrics, such as CPU, memory, and disk usage. Grafana Loki is a log management

solution, designed to work efficiently with large volumes of log data (Simili et al., 2021). Its query

language, LogQL, allows users to perform quick searches and precise filtering of logs.

Prometheus, on the other hand, is an open-source monitoring and alerting system that collects

metrics from systems and services. It stands out for its ability to collect and store metrics from

instrumented services in a time-series database (Erdei & Toka, 2023). For this purpose, it uses

PromQL, a specialized query language for data extraction and alert creation based on specific

metrics (Adamyaa et al., 2022).

APIs are interfaces that allow the integration of multiple pre-existing functionalities for

developers, facilitating communication between different software modules (Lamothe et al.,

2021). There are various APIs with multiple purposes; in this research, integration was carried out

with the OpenAI API, which provides a series of models with multiple purposes, from chatbot

creation through natural language processing (NLP) to image generation (Santoso et al., 2023).

The Telegram API, for its part, facilitates the integration of real-time messaging services, allowing

for notification sending and user interaction through messages for the creation of systems with

specific purposes (Alia et al., 2024).

2.2. Architecture design

The proposed architecture, as illustrated in Figure 1, consists of establishing a central server

responsible for monitoring the status and performance of the rest of the organization's servers.

Using Prometheus, metrics from each server will be stored, which will be collected through Node

Exporter, an agent that exposes basic operating system statistics. These metrics were useful for

evaluating performance, detecting possible anomalies in resource usage (such as CPU, memory,

and disk), and anticipating failures before they affect normal service operation. With this

information, it will be possible to implement real-time alert strategies and proactively optimize

the infrastructure.

Grafana Agent was used to send logs to Grafana Loki, installed on the central server. These logs

detailed events and activities on each monitored server. By centralizing logs in Loki, performance

 Espinosa-Luna, et al.

4 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

metrics could be correlated with specific events, identifying the root cause of problems such as

bottlenecks, service failures, or anomalous behaviors. Additionally, log analysis enriched the alerts

through the OpenAI model, providing a complete view of the infrastructure's state.

Figure 1. AI-integrated monitoring system architecture

The integration of these tools allows teams to obtain detailed information about the status and

performance of their microservices, quickly detect errors, and ensure optimal functioning of the

architecture (Jani, 2024).

2.3. Alert system

Grafana offers a configurable alert system based on defined rules for both logs and server metrics.

These alerts are triggered when certain indicator values exceed established thresholds, allowing

for a quick response to possible incidents. For this research, the following alerts have been been

considered:

Table 1. Alert rules configured for server monitoring

Alert name Summary Condition/Threshold
Evaluation
Frequency

CPU Usage CPU usage is over 90%
CPU > 90%
for 10 sec

Every 1 min

RAM Usage
RAM usage is over

90%
Memory > 95%

for 10 sec
Every 1 min

Server Down Detection
Instance has recently

shut down
Instance state < 0.5 Every 1 min

SSH Authentication
Failure

More than 4 SSH
authentication failures
have been detected on
the server in the last

10 minutes

More than 4 failed attempts
since last 10 minutes

Every 1 min

 Espinosa-Luna, et al.

5 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

When any of the previously configured conditions are met, an event is generated and sent to the

webhook programmed in the API. This webhook is responsible for interacting with the Telegram

API to immediately notify all administrators through their mobile devices about the occurred

event. In parallel, the logs are analyzed through the OpenAI API, with the aim of automatically

diagnosing the root cause of the problem. The analysis results are also sent to administrators

through Telegram, providing useful and detailed information so they can take immediate

corrective actions.

2.4. Development framework

Scrum is an agile framework for project management based on collaboration, self-organization,

and delivery of functional products in incremental iterations (Sassa et al., 2023). It operates

through sprints, which consist of time-boxed planned events. As illustrated in Figure 2, it

encompasses four events during development, whose fulfillment, according to the Scrum guide,

influences the perception of project success (Kadenic et al., 2023): Sprint Planning, where the team

defines what work will be done during the sprint and how it will be achieved; Daily Scrum, a brief

daily meeting to synchronize activities and plan the next 24 hours; Sprint Review, where

completed work is presented at the end of the sprint and feedback is received from stakeholders;

and Sprint Retrospective, a meeting to reflect on the sprint and improve future iterations (Behutiye

et al., 2024; Sassa et al., 2023).

Additionally, these events are supported by Scrum artifacts, which are essential in the success of

agile software development, where the Product Backlog is a prioritized list of all work needed in

the project, managed by the Product Owner. The Sprint Backlog is a subset of the Product Backlog

that the development team commits to completing during a specific sprint (Garcia et al., 2021).

Finally, the Burndown Chart is a visual tool that shows the team's progress toward completing

work in the sprint (Ghimire & Charters, 2022).

Figure 2. Scrum life cycle by Sassa et al. (2023)

 Espinosa-Luna, et al.

6 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

To obtain a clear initial vision of the project, user stories were listed and an estimated Product

Backlog was created to guide the development of the monitoring system. According to Table 1, 20

user story points were estimated to be completed in 14.5 days.

Table 2. Estimated Product Backlog

Sprint #US Description Size Points
Time

(days)

First
Sprint

US1
Collect performance metrics (CPU, memory, disk,
and network) from each server using
Prometheus and Node Exporter.

XS 1 1

US2
Collect logs from all servers using Grafana Loki

for event analysis on the servers.
XS 1 1

US3
Develop a dashboard to monitor Prometheus

performance metrics in real-time.
M 3 2

Second
Sprint

US4
Develop a dashboard to monitor system logs
from the servers in real-time.

M 3 2

US5
Configure alerts to automatically notify when

servers exceed resource usage thresholds.
S 2 1.5

US6

Configure alerts based on log analysis to

automatically notify unusual behaviors on the

servers.

S 2 1.5

 US7
Send resource usage alerts to organization users
via Telegram.

L 5 3

Third
Sprint

US9
Send log analysis-based alerts to organization
users via Telegram.

XS 1 1

US10
Integrate an OpenAI model into the alerts to
provide detailed tracking of possible causes and
action suggestions.

S 2 1.5

User Story Points / Estimated Time 20 14.5

3. RESULTS AND DISCUSSION

3.1. Metrics and Logs Visualization

The system allows visualizing resource usage metrics in the different servers connected in real

time through Grafana, integrating the data coming from Prometheus and Node Exporter. As shown

in figure 3, the dashboard displays detailed information about the CPU, memory and storage usage

of the servers. This integration aims to provide a continuous monitoring tool that is easy to manage

without direct interaction with the servers.

Figure 3. Resource usage dashboard in Grafana

 Espinosa-Luna, et al.

7 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

The integration with Loki made it possible to collect and store the logs generated by the servers.

Figure 4 shows how the logs were visualized in the Grafana dashboard, which allowed the

operations team to access the events recorded in a defined time range. This functionality provides

additional context to the analysis of unusual behavior and server interactions.

Figure 4. Viewing logs through Loki in Grafana Dashboard

3.2. Alert Configuration

The system was configured to manage two types of alerts: resource usage alerts and alerts based

on system logs. Figure 5 shows the control panel that allows tracking the status of the alerts. On

the other hand, Figures 6 (a) and 6 (b) show alert messages that warn about excessive RAM and

CPU resource usage analysis, together with a follow-up message, which is linked to the alert

identifier previously received and provides information about the impact of the alert and

suggestions for action, thus facilitating incident response.

Figure 5. Alert management screen

 Espinosa-Luna, et al.

8 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

Figure 6 (c) shows a similar dynamic, but displaying an alert related to logs, specifically

unauthorized access attempts through the SSH service of a server.

Figure 6. Receiving alerts and tracking via Telegram

3.3. Evaluation of Alert Times and System Analysis

A total of 311 tests were conducted, where the values illustrated in Table 3 were obtained. It can

be observed that the average initial alert time was 1.02 seconds, indicating that, on average, the

system took just over a second to generate an alert from the moment the alert condition was

detected.

Table 3. Evaluation of initial alert time

Parameter Value (seg)
Mean 1,02

Maximum 1,97

Minimum 0,70

Similarly, Table 4 shows the evaluation of the response time of the gpt-4o-mini model when

performing the analysis. The average response time was 2.17 seconds, indicating that, on average,

the model takes just over two seconds to complete the data analysis.

Table 4. Evaluation of GPT model response time in analysis

Parameter Value (seg)

Mean 2,17
Maximum 8,85
Minimum 1,13

Finally, the analysis is sent once the alerts have been processed by the AI model. Similar to the

initial alert time, the values remain low and with little variability, averaging 0.55 seconds, as shown

in Table 5.

Table 5. Evaluation of follow-up message sending time

Parameter Value (seg)
Mean 0.55

Maximum 0.92
Minimum 0.19

 Espinosa-Luna, et al.

9 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

Figure 7 presents a summary of the values obtained in all the tests conducted for acknowledged

time, completion time, and send analysis time. It can be observed that the alert sending times are

consistently low and show little variability. However, the completion time shows greater

variability, with significant peaks.

Figure 7. Response times of AI-integrated monitoring system

The monitoring system developed in this study incorporates tools for the detection and analysis

of server incidents, complemented by an alert system through messaging applications. This

approach reflects practices seen in previous studies, where solutions like Grafana and instant

messaging applications, such as Telegram, have been implemented for sending automatic alerts

(Butarbutar et al., 2023; Iqromullah et al., 2023). Additionally, the use of Prometheus for metric

collection has been highlighted, allowing the creation of dashboards with real-time data updates

for system monitoring (Gaol et al., 2022).

Similarly, for effective server monitoring, it is essential to define critical monitoring points.

Igromullah et al. (2023) and Sun et al. (2020) mention that the most common problems in servers

include excessive resource usage, such as hard disk, memory saturation, and the interruption of

essential services for the operation of applications, such as databases and other services.

The evaluation of the initial alert time showed an average time of 1.02 seconds, with a result

similar to the monitoring system of Sun et al. (2020), whose average was 8.79 seconds, both being

quick in sending alerts.

On the other hand, the evaluation of the response time of the GPT model used for the analysis

presented an average time of 2.17 seconds. The models evaluated by Kuang et al. (2024) such as

Alert Storm or LiDAR, analyzed an alert in an average time of 1.82 and 0.90 seconds respectively,

being faster than GPT; however, according to the authors, a response time of less than 10 seconds

by artificial intelligence models is acceptable for production.

CONCLUSIONS

This work has presented an approach for developing a system monitoring platform that integrates

artificial intelligence, exploring its applicability in responding to server incidents. A system was

 Espinosa-Luna, et al.

10 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

designed that incorporates artificial intelligence for the detection and analysis of server incidents,

and the response times of alerts sent by the Telegram messaging application were evaluated, as

well as the response time of the GPT model in incident tracking and log analysis. Out of a total of

311 tests, the results indicate that the system can generate alerts with an average time of 1.02

seconds and that the GPT model provides analysis with an average time of 2.17 seconds, adding

value by offering better context and recommendations for the alerts. It is suggested that future

research should focus on field studies in network operations centers to evaluate the effectiveness

and adaptability of the platform in practical conditions. Additionally, it is recommended to explore

integration with technologies such as the Internet of Things (IoT) to include physical monitoring,

which could enrich incident management by covering both hardware and the operating

environment.

FINANCING

The authors did not receive any sponsorship to carry out this study-article.

CONFLICT OF INTEREST

There is no type of conflict of interest related to the subject of the work.

AUTHORSHIP CONTRIBUTION

Conceptualization: Castillo-Oliva, J. Data curation: Castillo-Oliva, J., Garcí a-Gutie rrez, W. F. Formal

analysis: Garcí a-Gutie rrez, W. F. Funding acquisition: Espinosa-Luna, B. H. Investigation: Espinosa-

Luna, B. H., Castillo-Oliva, J. Methodology: Garcí a-Gutie rrez, W. F. Project administration: Espinosa-

Luna, B. H. Software: Espinosa-Luna, B. H., Castillo-Oliva, J., Garcí a-Gutie rrez, W. F. Resources:

Garcí a-Gutie rrez, W. F. Supervision & Validation: Mendoza-de-los-Santos, A. Visualization: Castillo-

Oliva, J., Garcí a-Gutie rrez, W. F. Writing – original draft: Espinosa-Luna, B. H., Castillo-Oliva, J.,

Garcí a-Gutie rrez, W. F. Writing – review & editing: Espinosa-Luna, B. H., Castillo-Oliva, J., Garcí a-

Gutie rrez, W. F., Mendoza-de-los-Santos, A.

AVAILABILITY OF DEPOSITED DATA

The dataset analyzed in this research is accessible through the Mendeley Data repository at

https://data.mendeley.com/datasets/md7x42rcbm/1, identified by DOI:

10.17632/md7x42rcbm.1. It is shared under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license, permitting usage, sharing, and reproduction with appropriate attribution to

the original creator.

REFERENCES

Adamyaa, D., Dinesh, S., Priya, & Soumya. (2022). Building a Monitoring Framework for a

Distributed Cloud Application Using Prometheus and Chef—An Overview. International

Journal for Research in Applied Science and Engineering Technology, 10(7), Article 7.

https://doi.org/10.22214/ijraset.2022.45716

Ahmed, S., Singh, M., Doherty, B., Ramlan, E., Harkin, K., & Coyle, D. (2022). AI for Information

Technology Operation (AIOps): A Review of IT Incident Risk Prediction. 2022 9th

https://data.mendeley.com/datasets/md7x42rcbm/1
https://doi.org/10.17632/md7x42rcbm.1
https://doi.org/10.22214/ijraset.2022.45716

 Espinosa-Luna, et al.

11 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

International Conference on Soft Computing & Machine Intelligence (ISCMI) , 253-257.

https://doi.org/10.1109/ISCMI56532.2022.10068482

Alia, P. A., Prayogo, J. S., Kriswibowo, R., & Setyadi, A. T. (2024). Implementation Open Artificial

Intelligence ChattGPT Integrated With Whatsapp Bot. Advance Sustainable Science,

Engineering and Technology, 6(1), Article 1. https://doi.org/10.26877/asset.v6i1.17909

Anam, K., Rofi, D. N., & Meiyanti, R. (2023). Monitoring System for Temperature and Humidity

Sensors in the Production Room Using Node-Red as the Backend and Grafana as the

Frontend. Journal of Systems Engineering and Information Technology (JOSEIT) , 2(2), Article

2. https://doi.org/10.29207/joseit.v2i2.5222

Behutiye, W., Tripathi, N., & Isomursu, M. (2024). Adopting Scrum in Hybrid Settings, in a

University Course Project: Reflections and Recommendations. IEEE Access, 12, 105633-

105650. Scopus. https://doi.org/10.1109/ACCESS.2024.3434662

Bhanage, D. A., Pawar, A. V., Kotecha, K., & Abraham, A. (2023). Failure Detection Using Semantic

Analysis and Attention-Based Classifier Model for IT Infrastructure Log Data. IEEE Access,

11, 108178-108197. https://doi.org/10.1109/ACCESS.2023.3319438

Broniewski, A., Tirmizi, M. I., Zima nyi, E., & Sakr, M. (2023). Using MobilityDB and Grafana for

Aviation Trajectory Analysis. undefined-undefined.

https://doi.org/10.3390/engproc2022028017

Butarbutar, R. T. B. D., Sasmita, G. M. A., & Pratama, I. P. A. E. (2023). Development of a

Notification-Based Network Security Monitoring System Using Network Development Life

Cycle (NDLC). JITTER : Jurnal Ilmiah Teknologi dan Komputer , 4(3), 1933.

https://doi.org/10.24843/JTRTI.2023.v04.i03.p01

Chan, Y. W., Fathoni, H., Yen, H. Y., & Yang, C. T. (2022). Implementation of a Cluster-Based

Heterogeneous Edge Computing System for Resource Monitoring and Performance

Evaluation. IEEE Access, 10, 38458-38471. https://doi.org/10.1109/ACCESS.2022.3166154

Ehrlinger, L., & Wo ß, W. (2022). A Survey of Data Quality Measurement and Monitoring Tools.

Frontiers in Big Data, 5, 850611. https://doi.org/10.3389/fdata.2022.850611

Erdei, R., & Toka, L. (2023). Minimizing Resource Allocation for Cloud-Native Microservices.

Journal of Network and Systems Management , 31(2), 35. https://doi.org/10.1007/s10922-

023-09726-3

Gaol, F. L., Santoso, S., & Matsuo, T. (2022). Design and development of the application

monitoring the use of server resources for server maintenance. Open Engineering, 12(1),

524-538. Scopus. https://doi.org/10.1515/eng-2022-0055

Garcia, L. A., OliveiraJr, E., Leal, G. C. L., & Morandini, M. (2021). A Unified Feature Model for Scrum

Artifacts from a Literature and Practice Perspective. 296-305.

https://doi.org/10.5753/eres.2020.13740

Ghimire, D., & Charters, S. (2022). The Impact of Agile Development Practices on Project

Outcomes. Software, 1(3), Article 3. https://doi.org/10.3390/software1030012

Hadikusuma, R. S., Lukas, L., & Bachri, K. O. (2023). Survey Paper: Optimization and Monitoring

of Kubernetes Cluster using Various Approaches. Sinkron, 8(3), Article 3.

https://doi.org/10.1109/ISCMI56532.2022.10068482
https://doi.org/10.26877/asset.v6i1.17909
https://doi.org/10.29207/joseit.v2i2.5222
https://doi.org/10.1109/ACCESS.2024.3434662
https://doi.org/10.1109/ACCESS.2023.3319438
https://doi.org/10.3390/engproc2022028017
https://doi.org/10.24843/JTRTI.2023.v04.i03.p01
https://doi.org/10.1109/ACCESS.2022.3166154
https://doi.org/10.1007/s10922-023-09726-3
https://doi.org/10.1007/s10922-023-09726-3
https://doi.org/10.1515/eng-2022-0055
https://doi.org/10.5753/eres.2020.13740
https://doi.org/10.3390/software1030012

 Espinosa-Luna, et al.

12 Rev. Cient. Sist. Inform. 5(2): e811; (Jul-Dec, 2025). e-ISSN: 2709-992X

https://doi.org/10.33395/sinkron.v8i3.12424

Iqromullah, R., Khairil, K., & Suryana, E. (2023). Security System Implementation And Monitoring

Networks At Sma N 10 City Of Bengkulu. Jurnal Media Computer Science, 2(2), Article 2.

https://doi.org/10.37676/jmcs.v2i2.4431

Jani, Y. (2024). Unified Monitoring for Microservices: Implementing Prometheus and Grafana for

Scalable Solutions. Journal of Artificial Intelligence, Machine Learning and Data Science, 2(1),

848-852. https://doi.org/10.51219/JAIMLD/yash-jani/206

Kadenic, M. D., Koumaditis, K., & Junker-Jensen, L. (2023). Mastering scrum with a focus on team

maturity and key components of scrum. Information and Software Technology, 153, 107079.

https://doi.org/10.1016/j.infsof.2022.107079

Kuang, J., Liu, J., Huang, J., Zhong, R., Gu, J., Yu, L., Tan, R., Yang, Z., & Lyu, M. R. (2024). Knowledge-

aware Alert Aggregation in Large-scale Cloud Systems: A Hybrid Approach. Proceedings of

the 46th International Conference on Software Engineering: Software Engineering in Practice ,

369-380. https://doi.org/10.1145/3639477.3639745

Lamothe, M., Gue he neuc, Y.-G., & Shang, W. (2021). A Systematic Review of API Evolution

Literature. ACM Computing Surveys, 54, 1-36. https://doi.org/10.1145/3470133

Penkov, St., & Taneva, A. (2021). Chat Programs in the Frame of Control System. IFAC-

PapersOnLine, 54(13), 52-56. https://doi.org/10.1016/j.ifacol.2021.10.417

Santosa, I., & Mulyana, R. (2023). The IT Services Management Architecture Design for Large and

Medium-sized Companies based on ITIL 4 and TOGAF Framework. JOIV : International

Journal on Informatics Visualization, 7(1), 30. https://doi.org/10.30630/joiv.7.1.1590

Santoso, G., Setiawan, J., & Sulaiman, A. (2023). Development of OpenAI API Based Chatbot to

Improve User Interaction on the JBMS Website. G-Tech: Jurnal Teknologi Terapan, 7(4),

Article 4. https://doi.org/10.33379/gtech.v7i4.3301

Sassa, A. C., Almeida, I. A. de, Pereira, T. N. F., & Oliveira, M. S. de. (2023). Scrum: A Systematic

Literature Review. International Journal of Advanced Computer Science and Applications,

14(4), Article 4. https://doi.org/10.14569/IJACSA.2023.0140420

Simili, E., Stewart, G., Roy, G., Skipsey, S., & Britton, D. (2021). A hybrid system for monitoring

and automated recovery at the Glasgow Tier-2 cluster. EPJ Web of Conferences, 251.

https://doi.org/10.1051/epjconf/202125102047

Sun, Y., Ye, K., & Xu, C.-Z. (2020). PLMSys: A Cloud Monitoring System Based on Cluster

Performance and Container Logs. En Q. Zhang, Y. Wang, & L.-J. Zhang (Eds.), Cloud

Computing – CLOUD 2020 (Vol. 12403, pp. 111-125). Springer International Publishing.

https://doi.org/10.1007/978-3-030-59635-4_8

Yu, Q., Zhao, N., Li, M., Li, Z., Wang, H., Zhang, W., Sui, K., & Pei, D. (2024). A survey on intelligent

management of alerts and incidents in IT services. Journal of Network and Computer

Applications, 224, 103842. https://doi.org/10.1016/j.jnca.2024.103842

https://doi.org/10.33395/sinkron.v8i3.12424
https://doi.org/10.37676/jmcs.v2i2.4431
https://doi.org/10.51219/JAIMLD/yash-jani/206
https://doi.org/10.1016/j.infsof.2022.107079
https://doi.org/10.1145/3639477.3639745
https://doi.org/10.1145/3470133
https://doi.org/10.1016/j.ifacol.2021.10.417
https://doi.org/10.30630/joiv.7.1.1590
https://doi.org/10.33379/gtech.v7i4.3301
https://doi.org/10.14569/IJACSA.2023.0140420
https://doi.org/10.1051/epjconf/202125102047
https://doi.org/10.1007/978-3-030-59635-4_8
https://doi.org/10.1016/j.jnca.2024.103842

