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ABSTRACT 

Early detection of black pod in cocoa plantations represents a key challenge in the agricultural sector, as it 
affects yield and grain quality. The lack of advanced methods hinders timely identification. This study develops 
artificial vision models based on convolutional neural networks (CNN) to improve detection. Over nine months, 
we collected and labeled 1,982 images of affected pods from five plots in the Shitarillo sector, Alto Saposoa 
district, San Martín. We implemented YOLOv8, InceptionV3, and VGG19, applying transfer learning to optimize 
classification. The dataset was split into 70% for training, 20% for validation, and 10% for testing. YOLOv8 and 
InceptionV3 achieved an average accuracy of 79%, outperforming VGG19. Evaluation metrics, along with 
ANOVA and Tukey tests, confirmed that both models provided superior performance with no significant 
differences between them. YOLOv8 stood out for its greater robustness and accuracy, suggesting its 
implementation in early detection systems to optimize disease control in cocoa plantations. 

Keywords: early detection, deep learning models, image analysis, automatic classification, precision 

agriculture 

RESUMEN 

La detección temprana de la mazorca negra en plantaciones de cacao representa un desafío clave en el sector 
agrícola, ya que afecta el rendimiento y la calidad del grano. La falta de métodos avanzados dificulta su 
identificación oportuna. Este estudio desarrolla modelos de visión artificial basados en redes neuronales 
convolucionales (CNN) para mejorar su detección. Durante nueve meses, recolectamos y etiquetamos 1982 
imágenes de mazorcas afectadas en cinco parcelas del sector Shitarillo, distrito de Alto Saposoa, San Martín. 
Implementamos YOLOv8, InceptionV3 y VGG19, aplicando transferencia de aprendizaje para optimizar la 
clasificación. Dividimos los datos en 70% para entrenamiento, 20% para validación y 10% para pruebas. 
YOLOv8 e InceptionV3 alcanzaron una precisión promedio del 79%, superando a VGG19. Las métricas de 
evaluación, junto con pruebas ANOVA y Tukey, confirmaron que ambos modelos ofrecieron un desempeño 
superior sin diferencias significativas entre ellos. YOLOv8 destacó por su mayor robustez y exactitud, lo que 
sugiere su implementación en sistemas de detección temprana para optimizar el control de la enfermedad en 
plantaciones de cacao. 

Palabras clave: detección temprana, modelos de aprendizaje profundo, análisis de imágenes, clasificación 

automática, agricultura de precisión 
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1. INTRODUCTION 

Theobroma cacao L., commonly known as cocoa, is a crop of great relevance in developing countries 

(Palacios Bejarano et al., 2021). Its beans are used in the production of chocolates, beverages, soft drinks, 

ice creams, sweets, and other food products (Kumi et al., 2022; Vásquez-Cortez et al., 2024). However, 

one of its most common diseases, black pod rot, causes losses of up to 80% in annual production (Franco 

et al., 2019), making early detection and effective treatment crucial (Gyamfi et al., 2020). 

In Peru, 87.3% of cocoa production comes from Ucayali (9.8%), Junín (19.9%), San Martín (39.1%), 

Cusco, and Amazonas (18.5%) (MIDAGRI, 2022). However, these figures show significant variations due 

to diseases affecting production (Cuadra et al., 2020). The San Martín region leads production with 

28,984 hectares cultivated (Fachin et al., 2019), surpassing crops such as rice, coffee, and oil palm (INEI, 

2022). Nevertheless, its sustainability faces major challenges, particularly due to the presence of black 

pod rot, caused by the fungus Phytophthora palmivora, which remains a constant concern for farmers. 

They must develop visual skills to identify the disease in its early stages (Fachin et al., 2019), highlighting 

the challenges faced by cocoa production in the region. 

Our research addresses the inefficacy of traditional visual and morphological inspection methods in 

identifying black pod disease in cocoa. The complexity of recognizing its visible symptoms (Picon et al., 

2019) and the subjectivity of the evaluation, especially when conducted by young farmers (Mashood 

Nasir et al., 2021; Mohammad Yazdi Pusadan et al., 2022), compromise diagnostic accuracy. Although 

experts can provide more reliable assessments, accessing them takes time and increases costs (Pandian et 

al., 2022; Singh et al., 2020), making the implementation of effective control measures more challenging 

(Almadhor et al., 2021; Khattak et al., 2021). 

Moreover, the diversity of disease symptoms (Ahmad et al., 2023) and the influence of factors such as 

cocoa variety, environmental conditions, and biological interactions (Barburiceanu et al., 2021) further 

complicate its identification. Visual identification is challenging due to the wide variability in its 

morphological expression (Baculio & Barbosa, 2022; H. Li et al., 2022), which is influenced by factors such 

as cocoa type, environmental conditions, and biological interactions (Mzoughi & Yahiaoui, 2023). These 

factors, combined with the lack of precise and effective technological devices for early disease detection 

(Basri et al., 2020; Olofintuyi, 2022), pose a significant risk to cocoa production. 

These factors lead to errors in disease identification, as phenotypic visual inspection performed by 

farmers or experts proves to be inaccurate (Roy et al., 2021). Consequently, cocoa quality and production 

are reduced (Che’Ya et al., 2022), affecting producers' competitiveness in the global market. Additionally, 

the indiscriminate use of fungicides (L. Li et al., 2021) can lead to plant resistance, decreasing treatment 

effectiveness (Jackulin & Murugavalli, 2022) and causing economic losses (Khalid et al., 2023). This issue 

not only impacts producers' profitability but also has implications for community health and ecological 

balance (Boateng et al., 2023). 

The main barrier to finding a viable solution to this problem lies in the financial limitations of farmers, as 

the vast majority lack the means to acquire advanced technologies (Mushi et al., 2022). This situation is 

even more critical in developing countries, where insufficient government support for the agricultural 

sector and low productivity further restrict farmers' purchasing power. 

Faced with this issue, we aim to determine whether there are significant differences in the accuracy of 

various convolutional neural network models for detecting black pod disease in cocoa plantations in the 

San Martín region. Our objective is to enhance early detection of this disease through the application of 

artificial vision models. We designed a protocol for collecting and labeling images of black pod in cocoa 

plantations, developed and trained convolutional neural network-based models for classification, and 

evaluated their performance by comparing their accuracy. Through this research, we seek to contribute 
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to the development of technological tools that enable more efficient and precise disease identification, 

helping farmers improve cocoa production and sustainability. 

2. MATERIALS AND METHODS 

We conducted this research in the Shitarillo sector, located in the Alto Saposoa district, Huallaga province, 

in the San Martín department of Peru. This area belongs to the high jungle of the Peruvian Andes and is 

situated at an average altitude of 420 meters above sea level. The local economy primarily depends on 

agriculture, with cocoa being one of its main crops. The region's agroclimatic conditions, characterized by 

warm temperatures and high humidity, favor the spread of diseases such as black pod rot (Phytophthora 

palmivora), highlighting the need to develop efficient methods for early detection. 

We conducted the study between October 2023 and July 2024, during which we collected and processed 

images of cocoa pods at different stages of infection for subsequent analysis using artificial vision models. 

The study population consists of digital images of cocoa pods collected directly from the field. The images 

were captured using a Huawei Y9s 2019 mobile phone between 10:00 a.m. and 3:00 p.m., focusing on 

cocoa fruits aged 4 to 6 months from flowering. 

To ensure a representative dataset, we labeled and organized the images into five categories: Stage 1, 

Stage 2, Stage 3, Stage 4 (corresponding to different stages of black pod infection), and healthy fruits. In 

total, we collected 1,982 images, distributed as follows: 400 images for each of the 4 disease stages and 

382 images of healthy fruits. 

 
Figure 1. Images Comprising the Dataset 

We applied intentional non-probabilistic sampling, selecting images based on specific criteria of 

quality and representativeness of the problem under study (Olofintuyi, 2022). We split the dataset into 

three subsets: 70% for training, 20% for validation, and 10% for testing, following standard practices 

in deep learning model evaluation (Bishop & Bishop, 2024). 

Dataset Acquisition and Labeling 

We captured the images using a Huawei Y9s 2019 mobile phone, set to a 12 MP (4:3) resolution, with the 

camera grid option activated to optimize the alignment of cocoa pods. We maintained a constant distance 

of 30 cm between the camera and the fruits to ensure a uniform perspective. To enhance image quality, 

we avoided unfavorable lighting conditions, such as direct sunlight exposure or backlighting. An 

agronomist engineer supervised this process to ensure the proper documentation of the samples. 
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Figure 2. Schematic representation of image 

capture on a cocoa pod 

 
Figure 3. Capturing images of cocoa pods 

infected by the disease (Stage 1) 

After acquiring the images, we carried out a meticulous labeling and classification process, assigning each 

image to one of five categories: Stage 1, Stage 2, Stage 3, Stage 4 (corresponding to the stages of black pod 

disease) or Healthy Cocoa. To ensure an organized and standardized nomenclature, we implemented a 

Python algorithm that automated the naming assignment for each image, ensuring consistency in storage 

and facilitating subsequent processing. 

Validation, Splitting, and Storage of the Dataset 

To ensure dataset quality, we meticulously validated each image assigned to one of the five categories 

(Stage 1, Stage 2, Stage 3, Stage 4, and Healthy Cocoa). A plant pathology specialist agronomist reviewed 

and verified the correspondence of each image with its assigned category. Additionally, we conducted 

internal cross-checks to maintain classification consistency; any disputed labels were reevaluated before 

final inclusion. 

We split the dataset into three subsets: training (70%), validation (20%), and testing (10%), following 

best practices in deep learning (Goodfellow et al., 2016). This strategy optimizes model performance by 

allowing it to learn from the majority of the data, adjust using an independent set, and undergo objective 

evaluation with entirely new images. 

To preserve dataset integrity and accessibility, we implemented a secure storage protocol. Images were 

organized into structured folders based on their usage, with a local copy stored on a personal computer 

and a backup copy in Google Drive, ensuring redundancy and protection against data loss. 

Subsequently, we conducted an exhaustive literature review on transfer learning, focusing on pretrained 

models that have proven effective in automatically classifying images into specific categories. These 

models leverage knowledge acquired from large datasets, enhancing disease detection in crops, 

minimizing the need for training from scratch, and improving generalization in new agricultural contexts. 

 

Figure 4. Contrast between traditional learning and transfer learning. 

Next, we selected three convolutional neural network (CNN) models for image classification: 

YOLOv8: Optimized for real-time detection, with an efficient approach to feature extraction and bounding 

boxes. 
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VGG19: Based on sequential 3x3 convolutional layers, suitable for recognizing complex hierarchical 

patterns. 

InceptionV3: Employs Inception modules to analyze multiple feature scales simultaneously. 

We implemented these models using optimization techniques such as learning rate adjustment and 

dropout regularization to improve generalization and prevent overfitting. 

After training the models, we collected key performance metrics, including accuracy, F1-score, precision, 

recall, Cohen’s Kappa, AUC-ROC, and confusion matrix. These metrics provided a quantitative evaluation 

of each model’s ability to correctly classify black pod disease stages and distinguish them from healthy 

fruits.  

Model Comparison  

We compared the performance of YOLOv8, VGG19, and InceptionV3 through a classification metric-based 

comparative analysis. We assessed each model’s ability to generalize on unseen data, analyzing their 

robustness in terms of accuracy, sensitivity, and computational efficiency. 

To determine whether the performance differences among models were statistically significant, we 

applied a factorial ANOVA on the performance indicators. This test helped us identify significant 

variations between models and evaluate which one offered the best accuracy and stability in 

classification.  

Visualization and analysis of results 

Finally, we graphically represented the results using ROC curves, confusion matrices, and comparative 

diagrams, facilitating the interpretation of differences between models. This analysis allowed us to draw 

conclusions on which architecture is best suited for early detection of black pod disease in cocoa 

plantations. 

3. RESULTS AND DISCUSSION 

Preprocessing and labeling of black pod images in cocoa plantations 

To optimize black pod detection, we applied a structured preprocessing approach to the image dataset, 

ensuring proper organization, cleaning, and transformation before training the models. 

Dataset loading and organization 

The images were divided into three subsets: 70% for training, 20% for validation, and 10% for testing. To 

efficiently manage data in Google Colab, we mounted the storage drive and accessed the structured 

folders according to their purpose. 

from google.colab import drive 

drive.mount('/content/drive') 

 

data_dir = "/content/drive/MyDrive/Cacao_BlackPod" 

train_data_dir, val_data_dir, test_data_dir = f"{data_dir}/train", f"{data_dir}/val", 

f"{data_dir}/test" 

Preprocessing and data augmentation 

To enhance model generalization and mitigate overfitting, we applied normalization, scaling, and data 

augmentation techniques. Carefully selected transformations included rotation, translation, brightness 

adjustment, zoom augmentation, and horizontal flipping, following data augmentation approaches used 

in recent studies (Atila et al., 2021; Wang et al., 2024).  

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

train_datagen = ImageDataGenerator( 

    rescale=1./255,   
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    rotation_range=20,   

    width_shift_range=0.2,   

    height_shift_range=0.2,   

    brightness_range=[0.7, 1.3],   

    zoom_range=0.3,   

    horizontal_flip=True   

) 

val_test_datagen = ImageDataGenerator(rescale=1./255)   

These configurations were experimentally adjusted to ensure optimal transformation without distorting 

the relevant features of black pod disease. 

Dataset Loading with Image Generators. 

The data were structured into batches of 32 images and loaded using image generators to facilitate model 

training. 

train_dataset = train_datagen.flow_from_directory(train_data_dir, target_size=(299, 299), batch_size=32, 
class_mode='categorical') 
val_dataset = val_test_datagen.flow_from_directory(val_data_dir, target_size=(299, 299), batch_size=32, class_mode='categorical', 
shuffle=False) 
test_dataset = val_test_datagen.flow_from_directory(test_data_dir, target_size=(299, 299), batch_size=32, 
class_mode='categorical', shuffle=False) 

Preprocessing Validation 

To verify the quality of the processed images, we generated a preview of the applied transformations. 

import matplotlib.pyplot as plt 

import numpy as np 

batch = train_dataset.next() 

images, labels = batch[0][:10], np.argmax(batch[1], axis=1) 

class_labels = list(train_dataset.class_indices.keys()) 

 

plt.figure(figsize=(14, 6)) 

for i in range(10): 

    plt.subplot(2, 5, i+1) 

    plt.imshow(images[i]) 

    plt.xlabel(class_labels[labels[i]]) 

plt.show() 

Impact of preprocessing on dataset organization 

 
Figure 5. Preprocessed Images 

The images obtained through this process were normalized, augmented, and consistently organized, 

ensuring compatibility with artificial vision models. This strategy, aligned with previous studies, 
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enhances training robustness and enables more stable performance in black pod detection, similar to the 

approaches of (Atila et al., 2021) and (Wang et al., 2024), who implemented resizing and data 

augmentation techniques before processing 

Training and Evaluation of Models for Black Pod Classification 

To classify black pod disease, we compared three convolutional neural network (CNN) architectures: 

YOLOv8, InceptionV3, and VGG19. 

Training with YOLOv8 

We trained the YOLOv8x-cls architecture from scratch using the generated dataset. 

from ultralytics import YOLO 

model = YOLO("yolov8x-cls.pt") 

results = model.train(data="/gdrive/MyDrive/Proyectos 

IA/CacaoVillalobos/Datased_BlackPod", 

                      epochs=20, imgsz=299) 

Transfer Learning with InceptionV3 and VGG19 

For the remaining models, we applied transfer learning, using pretrained weights on ImageNet and 

adapting them with additional layers. 

from tensorflow.keras.applications import InceptionV3, VGG19 

from tensorflow.keras.layers import Flatten, Dense, Dropout 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.regularizers import l2 

# Cargar modelo base (solo uno se usa a la vez) 

base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(299, 

299, 3)) 

# base_model = VGG19(weights='imagenet', include_top=False, input_shape=(299, 299, 

3)) # Alternativa para VGG19 

 

# Congelar capas del modelo base 

for layer in base_model.layers: 

    layer.trainable = False 

 

# Construcción del modelo 

x = Flatten()(base_model.output) 

x = Dense(1024, activation='relu', kernel_regularizer=l2(0.01))(x) 

x = Dropout(0.2)(x) 

predictions = Dense(5, activation='softmax')(x) 

 

model = Model(inputs=base_model.input, outputs=predictions) 

model.compile(optimizer=Adam(), loss='categorical_crossentropy', 

metrics=['accuracy'])}} 

Model Training 

We used callbacks to save the best model and trained for 30 epochs. 

from tensorflow.keras.callbacks import ModelCheckpoint 

 

checkpoint = ModelCheckpoint('Cacao_InceptionV3_Best.keras', monitor='val_accuracy', 

                             save_best_only=True, mode='max', verbose=1) 

 

history = model.fit(train_dataset, epochs=30, validation_data=validation_dataset, 

                    callbacks=[checkpoint]) 

Model Evaluation on the Test Set 

We evaluated accuracy using the reserved test set. 

score = model.evaluate(test_dataset) 

 

print(f"Pérdida: {score[0]}") 
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print(f"Exactitud: {score[1]}") 

Results 

InceptionV3: 
Lost:  0.9343509674072266 

Accuracy:  0.7450000047683716 

VGG19: 
Lost:  875.97900390625 

Accuracy:  0.20000000298023224 

Performance Visualization 

We displayed the evolution of accuracy during training and validation. 

import matplotlib.pyplot as plt 

plt.plot(history.history['accuracy'], label='Entrenamiento') 

plt.plot(history.history['val_accuracy'], label='Validación') 

plt.title('Exactitud del Modelo') 

plt.xlabel('Épocas') 

plt.ylabel('Exactitud') 

plt.legend() 

plt.show() 

 
Figure 6. Training Metrics (InceptionV3) 

 
Figure 7. Training Metrics (VGG19) 

The training process figures (Figure 6 and Figure 7) show that the final accuracy metric values in the 

training and validation sets remain stable, suggesting that the model did not experience overfitting. This 

indicates that the chosen architecture achieved adequate generalization to the data without excessive 

dependence on the training set. 

In previous studies, such as Kumi et al. (2022), models for the automated detection of cocoa diseases have 

been developed. Their approach, based on SSD MobileNet v2, achieved a validation accuracy of 88%, 

outperforming the YOLOv8 model implemented in this study, which obtained 79.5%. This performance 

difference may be attributed to multiple factors, including the quality, quantity, and diversity of the 

training images used in each study. It is possible that the dataset used by Kumi et al. (2022) contained a 

higher volume of labeled data or higher-resolution images, which may have improved model accuracy. 

However, YOLOv8 remains a viable alternative for the early detection of black pod disease, as its 

performance remains within a competitive margin and offers advantages in terms of computational 

efficiency and real-time detection. Future research could focus on optimizing the dataset, incorporating 

advanced data augmentation techniques, or using hybrid models to further improve classification 

accuracy. 

Comparing the performance of the proposed artificial vision models 

To evaluate and compare the performance of the trained models (YOLOv8, InceptionV3, and VGG19), we 

loaded each model and performed predictions on the test set. 
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Model loading and prediction 
from ultralytics import YOLO 

from tensorflow.keras.models import load_model 

import numpy as np 

# Cargar modelos 

model_yolo = YOLO("./runs/classify/train10/weights/best.pt") 

model_inception = load_model('Cacao_InceptionV3_Best.keras') 

model_vgg19 = load_model('Cacao_VGG19_Best.keras') 

# Predicciones 

pred_yolo = np.argmax(model_yolo.predict(test_dataset), axis=1) 

pred_inception = np.argmax(model_inception.predict(test_dataset), axis=1) 

pred_vgg19 = np.argmax(model_vgg19.predict(test_dataset), axis=1) 

Performance Evaluation 
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, 

cohen_kappa_score, confusion_matrix, roc_auc_score 

# Obtener etiquetas reales 

y_true = np.concatenate([np.argmax(batch[1], axis=1) for batch in test_dataset]) 

# Función para calcular métricas 

def evaluar_modelo(y_true, y_pred): 

    return { 

        "Exactitud": accuracy_score(y_true, y_pred), 

        "F1": f1_score(y_true, y_pred, average='micro'), 

        "Precisión": precision_score(y_true, y_pred, average='micro'), 

        "Recall": recall_score(y_true, y_pred, average='micro'), 

        "Kappa de Cohen": cohen_kappa_score(y_true, y_pred), 

        "ROC AUC": roc_auc_score(y_true, y_pred, multi_class="ovr") 

    } 

# Evaluar cada modelo 

resultados = { 

    "YOLOv8": evaluar_modelo(y_true, pred_yolo), 

    "InceptionV3": evaluar_modelo(y_true, pred_inception), 

    "VGG19": evaluar_modelo(y_true, pred_vgg19) 

} 

# Convertir resultados a DataFrame y mostrar 

import pandas as pd 

import ace_tools as tools 

 

df_resultados = pd.DataFrame(resultados).T 

tools.display_dataframe_to_user(name="Resultados de Evaluación de Modelos", 

dataframe=df_resultados) 

Confusion matrix visualization 
import matplotlib.pyplot as plt 

import seaborn as sns 

 

cm = confusion_matrix(y_true, pred_yolo)  # Se puede cambiar a otro modelo si se requiere 

 

plt.figure(figsize=(8,6)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') 

plt.xlabel('Predicción') 

plt.ylabel('Referencia') 

plt.title('Matriz de Confusión - YOLOv8') 

plt.show() 

Which results in the following outcome: 

Table 1. Comparison of performance metrics between YOLOv8, InceptionV3, and VGG19 in black pod classification. 

INDICATOR Yolov8 Inceptionv3 VGG19 

Accuracy 0.7902 0.7321 0.1920 

F1-Score 0.7902 0.7321 0.1920 

Precision 0.7902 0.7321 0.1920 

Recall 0.7902 0.7321 0.1920 

Cohen’s Kappa 0.7315 0.6535 0.0000 

ROC AUC 0.854 0.835 0.50 
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Figure 8. Confusion Matrix (YOLOv8) 

 
Figure 9. Confusion Matrix (InceptionV3) 

 
Figure 10. Confusion Matrix (VGG19) 

The confusion matrix results show that the YOLOv8 model achieved the highest accuracy (79.02%), 

efficiently classifying all stages of black pod disease and demonstrating strong recognition of healthy 

fruits (97.5% accuracy in the Healthy category). A slight confusion was observed between BP_F1 and 

BP_F2 (11 errors), suggesting that the characteristics of these early stages may appear similar to the 

model. InceptionV3, with an accuracy of 73.21%, also demonstrated acceptable classification 

performance, though it exhibited a higher number of errors in identifying healthy fruits (7 

misclassifications in the Healthy category) and struggled to distinguish BP_F3 from BP_F4. In contrast, 

VGG19 proved ineffective (19.20% accuracy), as it collapsed all predictions into the BP_F1 category, 

indicating that it failed to generalize the information across different classes correctly. 

These findings are consistent with previous research on crop disease detection using convolutional 
neural networks (Kumi et al., 2022; Mohammad Yazdi Pusadan et al., 2022; Olofintuyi, 2022). In a study 

by Baculio & Barbosa (2022) on the classification of cocoa brown rot, YOLOv5 outperformed EfficientNet 

with 81% accuracy, demonstrating that YOLO architectures are more efficient for real-time agricultural 

classification problems.  However, model accuracy heavily depends on dataset quality, which may explain 

the difference between this study and our findings. While YOLOv8 proved to be the most efficient model, 

future improvements could focus on increasing the amount of training data and applying advanced data 

augmentation techniques to enhance accuracy in the early stages of the disease, where the highest 

confusion was observed. 
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Figure 11. AUC ROC (YOLOv8) 

 
Figure 12. AUC ROC (InceptionV3) 

 

 
Figure 13. AUC ROC (VGG19) 

The ROC curves show that YOLOv8 achieved the best discriminative ability among classes, with AUC 

values ranging from 0.77 to 0.98, indicating high accuracy in classifying black pod disease and healthy 

fruits. InceptionV3 demonstrated a similar performance, with AUC values between 0.77 and 0.96, though 

with a slight reduction in discriminative ability for some classes compared to YOLOv8. In contrast, VGG19 

recorded an AUC of 0.50 across all classes, indicating performance equivalent to a random classifier, 

confirming its inability to differentiate between categories. 

The AUC values obtained for YOLOv8 and InceptionV3 align with previous studies, such as Basri et al., 

(2020), where CNN-based models achieved AUC values above 0.85 in crop disease classification for coffee 

plantations. The difference between YOLOv8 and InceptionV3 may be attributed to YOLOv8's ability to 

better capture spatial features in real-time, making it more efficient for agricultural scenarios. On the 

other hand, VGG19’s poor performance suggests that its architecture is not suitable for this task, as it 

failed to learn relevant patterns from the images. It is recommended to optimize the models by applying 

data augmentation and hyperparameter tuning to improve classification performance in classes with 

lower AUC values. 

Statistical Analysis of Model Performance 

To evaluate the performance variability of each model, the test set was divided into seven subsets, and 

each model was executed on each subset. Table 2 presents the results obtained for each metric: 

Table 2. Descriptive Statistics of Performance Metric 

Model N Media D. Est. Er. Est. IC 95% (L.I) IC 95% (L.S) Min Max 

YOLOv8 7 0.7902 0.09149 0.03458 0.7056 0.8748 0.69 0.91 

InceptionV3 7 0.7321 0.05945 0.02247 0.6772 0.7871 0.63 0.81 

VGG19 7 0.1920 0.04917 0.01859 0.1465 0.2374 0.13 0.25 

Total 21 0.5714 0.28369 0.06191 0.4423 0.7006 0.13 0.91 
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The average values indicate that YOLOv8 achieved the highest accuracy (79.02%), followed by 

InceptionV3 (73.21%), while VGG19 exhibited significantly lower performance (19.20%). Additionally, 

the 95% confidence intervals reveal that YOLOv8 has a higher variability margin compared to 

InceptionV3, yet it consistently remains within a higher performance range. 

ANOVA Test and Tukey Post-hoc Analysis 

To determine whether the differences between models were statistically significant, a one-way ANOVA 

was applied to the results of accuracy, precision, recall, F1-score, and Cohen’s Kappa: 

Table 3. ANOVA Test Results 

Variable Sum of squares gl Mean square F Sig. (p-valor) 

Accuracy 1.524 2 0.762 159.575 0.000 

F1-score 1.524 2 0.762 159.575 0.000 

Precision 1.524 2 0.762 159.575 0.000 

Recall 1.524 2 0.762 159.575 0.000 

Cohen’s Kappa 2.259 2 1.130 161.610 0.000 

Since in all evaluated metrics p-value < 0.01, we conclude that there are statistically significant 

differences among at least one of the evaluated models. 

To identify which models, exhibit significant differences, a Tukey post-hoc test was applied, and the 

results are presented in Table 4: 

Table 4. Tukey Test Results (Accuracy) 

Comparison 
Mean 

Difference 
Std. Error Sig. (p-valor) IC 95% (Lim Inf) IC 95% (Lim Sup) 

YOLOv8 - 
InceptionV3 

0.05804 0.03693 0.283 -0.0362 0.1523 

YOLOv8 - 
VGG19 

0.59821** 0.03693 0.000 0.5040 0.6925 

InceptionV3 - 
VGG19 

0.54018** 0.03693 0.000 0.4459 0.6344 

The results indicate that YOLOv8 and InceptionV3 do not exhibit significant differences (p = 0.283), 

suggesting that both models have similar performance. However, VGG19 is significantly inferior to both 

models (p < 0.001), confirming its ineffectiveness in black pod classification. 

The statistical analysis demonstrates that YOLOv8 and InceptionV3 are viable models for black pod 

detection, though YOLOv8 shows superior accuracy and consistency. The absence of significant 

differences between these two models suggests that both can be used in real-world applications, although 

YOLOv8 offers better generalization due to its optimized structure for real-time detection. 

Comparing these results with previous research, (Kumi et al., 2022) reported that SSD MobileNet 

achieved 80% accuracy in cocoa disease classification, a value very close to the 79% accuracy of YOLOv8 

in this study. The slight difference could be explained by variations in dataset quality and size used during 

training. Additionally, the high dispersion in Cohen’s Kappa values for InceptionV3 suggests that this 

model may be more sensitive to data variations, which could affect its implementation in environments 

with greater environmental variability. 

CONCLUSIONS 

We successfully improved the early detection of black pod disease in cocoa plantations in the San Martín 

region through the artificial vision models developed in this research, two of which demonstrated strong 

performance in the early identification of this disease. 
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We successfully and thoroughly collected and labeled a dataset of 1,982 images of black pod disease in 

cocoa plantations from five plots located in the Shitarillo sector, Alto Saposoa district, Huallaga province, 

San Martín region. 

We built three artificial vision models using advanced techniques, including convolutional neural 

networks for the YOLOv8-based model and transfer learning for the InceptionV3 and VGG19-based 

models. Two of these models proved effective in classifying black pod images segmented into five 

categories, which were further divided into training, validation, and test groups to ensure a structured 

training process. 

After building and training the three models, we evaluated and compared their performance using 

classification performance indicators applied to seven data subsets. These values were subjected to an 

ANOVA test, which determined that at least one model had significant differences compared to the others. 

The Tukey test confirmed that the VGG19-based model had a significantly lower performance than the 

other two models. However, the remaining two models showed no significant differences between them. 
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