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ABSTRACT 

Daily solar radiation forecasting in the Peruvian Amazon represents a relevant challenge due to the high atmospheric 

variability that characterizes the region. In this study, VEGA-RAD (Vega Radiative Adaptive Dynamics) is formulated and 

evaluated as a hybrid physical–statistical model for daily solar radiation prediction in tropical environments. The model 

integrates an interpretable physical–astronomical proxy, stochastic temporal memory, and an adaptive statistical correction  

based on machine learning to capture residual nonlinearities. The analysis is conducted using daily ERA5 reanalysis data for 

the period 2017–2025, obtained through the Open-Meteo API. The results show a reduction in mean absolute error (MAE) 

from 1.699 to 0.477 kWh/m²/d and an increase in the coefficient of determination (R²) from 0.635 to 0.854. These 

improvements are supported by paired inferential analysis (Wilcoxon) and non-parametric bootstrap resampling. In addition, 

conformal prediction intervals achieve coverage levels consistent with the nominal 90 % and 95 % levels, with a temporally 

stable average width, indicating a conservative and reliable quantification of predictive uncertainty. The proposed VEGA-RAD 

model is presented as a reproducible, interpretable, and robust tool for energy applications in Amazonian contexts.  

Keywords: machine learning; climate uncertainty; hybrid model; daily solar radiation  

RESUMEN 

La prediccio n diaria de la radiacio n solar en la Amazoní a peruana es un desafí o relevante debido a su elevada variabilidad 

atmosfe rica. En este estudio se formula y evalu a VEGA-RAD (Vega Radiative Adaptive Dynamics), un modelo hí brido fí sico–

estadí stico para la prediccio n diaria de radiacio n solar en regiones tropicales. El modelo integra un proxy fí sico–astrono mico, 

memoria temporal estoca stica y una correccio n estadí stica adaptativa basada en aprendizaje automa tico para capturar no 

linealidades residuales. El ana lisis se realizo  con datos diarios ERA5 (2017–2025) obtenidos mediante la API de Open-Meteo. 

Los resultados muestran una reduccio n del MAE de 1.699 a 0.477 kWh/m²/d y un aumento del R² de 0.635 a 0.854. Estas 

mejoras fueron confirmadas mediante ana lisis inferencial pareado (Wilcoxon) y remuestreo bootstrap. Adema s, los intervalos 

conformales alcanzan coberturas coherentes con los niveles nominales del 90 % y 95 %, con ancho medio estable en el tiempo, 

con ancho medio estable, evidenciando una cuantificacio n de la incertidumbre conservadora y confiable. El modelo hí brido 

“VEGA-RAD” se presenta como una herramienta reproducible, interpretable y robusta para aplicaciones energe ticas en 

contextos amazo nicos. 

Palabras clave: aprendizaje automa tico; incertidumbre clima tica; modelo hí brido; radiacio n solar diaria 
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1. INTRODUCTION  

Solar radiation prediction is a central issue for the efficient integration of renewable energy into modern 

electrical systems. The high spatiotemporal variability of solar radiation affects the sizing of photovoltaic 

plants, the stability of power grids, and the formulation of sustainable energy policies, particularly in 

regions with high climatic complexity (Bakír, 2024; Demir, 2025; Shringi et al., 2025; Tandon et al., 2025; 

Yadav et al., 2025; Zerouali et al., 2025). 

In tropical regions such as the Peruvian Amazon, this challenge is intensified due to persistent cloud cover, 

pronounced seasonality, and the scarcity of reliable meteorological stations. In this context, global 

reanalysis products have emerged as a robust alternative for characterizing solar radiation and associated 

atmospheric variables (Hersbach et al., 2020; Huang et al., 2021). 

Among these sources, ERA5 stands out for its temporal consistency, global spatial coverage, and extensive 

validation across multiple climatic zones. Its open access through programming interfaces facilitates 

reproducibility and methodological transparency in solar radiation prediction studies (Demir, 2025; Open-

Meteo, 2025). 

In parallel, advances in machine learning and deep learning have enabled models capable of capturing 

complex nonlinear relationships between solar radiation and atmospheric factors. In particular, hybrid 

approaches based on CNN–SVR, CNN–LSTM, and metaheuristic optimization show substantial 

improvements in daily solar radiation prediction across different climates (Ghimire et al., 2022; Hamdaouy 

et al., 2025; Y.H. et al., 2024; Raju et al., 2025; Şener & Tug al, 2025). 

Recent review studies confirm that hybrid models dominate the state of the art by integrating physical 

knowledge, algorithmic optimization, and adaptive learning, consistently outperforming purely statistical 

or physical approaches (Celik et al., 2025; Ghareeb et al., 2025; Rajput et al., 2025; Shringi et al., 2025). 

For intra-hour and intraday horizons, multimodal architectures that combine sky images with 

meteorological variables allow for highly accurate forecasting of rapid cloud changes. Proposals such as 

SkyNet and other multimodal models demonstrate high robustness against atmospheric variability (Abad-

Alcaraz et al., 2025; Hou et al., 2025; Ruan et al., 2026). 

Additionally, multiscale decomposition techniques, wavelet transforms, and ensemble methods reinforce 

predictive stability. The use of photovoltaic power data, satellite products, and exogenous variables also 

improves the representation of radiative dynamics (Arseven & Çínar, 2025; Cui et al., 2025; Solano & 

Affonso, 2023; Wu et al., 2025; Yan et al., 2025). 

Other environmental factors, such as air quality, have emerged as relevant predictors of solar radiation 

attenuation. Recent studies show that including atmospheric pollutants significantly enhances the accuracy 

of machine learning–based models (Aladwani et al., 2025; Hu et al., 2025). 

In medium- and long-term energy planning, evaluations based on bias-corrected CMIP6 projections and 

downscaling provide regional evidence of future changes in solar radiation. In this context, regional 

numerical models such as WRF–Solar and UV solar radiation studies confirm the high climate sensitivity of 

tropical regions (Amorim et al., 2024; Gao et al., 2025; Jadhav & Bhawar, 2025; Krishnan & Ravi Kumar, 

2025; Vignesh Kumar et al., 2025; Alves et al., 2025; Zhu et al., 2025). 

Despite these advances, a scientific gap remains in the development of models specifically designed for the 

Peruvian Amazon that integrate interpretable physical foundations, stochastic temporal memory, adaptive 

statistical correction, and explicit uncertainty quantification. In response to this gap, the present work 

proposes and formulates an original hybrid model called VEGA-RAD (Vega Radiative Adaptive Dynamics), 

aimed at daily solar radiation prediction using ERA5 data and well-calibrated point and probabilistic 

estimates. 
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2. MATERIALS AND METHODS 

2.1. Study Area 

The study area corresponds to the city of Tarapoto, located in the Peruvian Amazon (latitude −6.5°, 

longitude −76.3°). The region has a humid tropical climate, characterized by persistent cloud cover, high 

relative humidity, and pronounced intra- and interannual variability in solar radiation. These conditions 

make Tarapoto a particularly challenging environment for solar radiation prediction and the planning of 

photovoltaic systems. 

2.2. Data 

Daily ERA5 reanalysis data were obtained via the Open-Meteo API, an open-access platform that provides 

climate reanalysis products through RESTful web services. Specifically, the programmatic access endpoint 

for ERA5 is available at: https://archive-api.open-meteo.com/v1/era5  

Data access was carried out through parameterized HTTP requests, specifying geographic coordinates, the 

time period, and the meteorological variables of interest. Official API documentation and query examples 

are available on the Open-Meteo portal (https://open-meteo.com/). The data were downloaded on 

September 26, 2025. 

Table 1. Sample of Daily ERA5 Reanalysis Records for Tarapoto (01.01.2017–26.09.2025). Units: GHI in kWh/m²/d,  

cloud cover in %, temperature in °C, relative humidity in %, and wind speed in m/s  

 Date GHI cloud t2m rh2m wind 
1 01/2017 12.56 99 22.9 95 6.2 
2 01/2017 17.56 88 23.3 87 10.6 

3 01/2017 23.65 73 24.7 77 11.1 
4 01/2017 18.3 88 25.2 75 14.8 
5 01/2017 10.48 98 23.3 87 8.8 

Table 1 presents a representative sample of the daily ERA5 reanalysis records, highlighting the joint 

variability between global solar radiation and the associated meteorological variables. 

 
Figure 1. Time series of observed global horizontal solar radiation (ERA5) for Tarapoto (2017–2025). Annual 

seasonality and high daily variability associated with cloud cover and atmospheric conditions are evident 

Figure 1 shows the continuous evolution of daily GHI, revealing seasonal and interannual patterns 

characteristic of the Amazonian climate, which justifies the use of a hybrid approach with temporal 

memory. 

2.2.1. Data Preprocessing 

Prior to the formulation and training of the VEGA-RAD model, daily ERA5 reanalysis data were subjected to 

a preprocessing procedure aimed at ensuring temporal coherence, numerical stability, and reproducibility 

https://archive-api.open-meteo.com/v1/era5
https://open-meteo.com/
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of the analysis. First, the downloaded records were organized chronologically, and days with missing values 

in any of the considered variables were discarded, resulting in a final dataset composed exclusively of 

complete observations. 

Since ERA5 products incorporate global-scale quality control procedures, no additional outlier detection or 

removal methods were applied, in order to preserve physically plausible extremes associated with intense 

atmospheric events characteristic of the Amazonian climate. Likewise, no imputation of missing values was 

performed, as the analysis was restricted to days with complete information. 

As part of temporal aggregation, daily series were used directly, consistent with the prediction horizon of 

the study. From these series, a physical–astronomical solar radiation proxy was constructed as a reference, 

serving as the deterministic component of the model, and a logarithmic residual between the observed 

radiation and this reference was defined, which constitutes the target variable for the machine learning 

block. 

To capture temporal dependence and atmospheric persistence, lags of cloud cover and the residual were 

generated over short- and medium-term windows, along with moving averages summarizing the recent 

system dynamics. Additionally, Fourier harmonic terms based on the day of the year were incorporated to 

explicitly model the annual seasonality of solar radiation. 

No dimensionality reduction techniques, such as principal component analysis (PCA), were applied, since 

one of the objectives of VEGA-RAD is to preserve the physical interpretability of atmospheric variables and 

their transformations. All variables were used on scales consistent with their physical meaning, ensuring 

transparent integration between the physical, stochastic, and statistical components of the model. 

2.3. Methodology 

This section presents the methodological formulation of the proposed hybrid model, VEGA-RAD (Vega 

Radiative Adaptive Dynamics), developed for daily solar radiation prediction in the Peruvian Amazon. The 

methodology is structured into five clearly defined sequential components: (i) the hybrid VEGA-RAD 

formulation, which integrates physical foundations and stochastic memory with an adaptive statistical 

correction stage; (ii) the physical–astronomical proxy block, responsible for modeling reference solar 

radiation based on celestial mechanics principles; (iii) the stochastic memory block, which captures the 

temporal dependence and annual seasonality of solar radiation; (iv) the adaptive machine learning–based 

statistical correction block, applied to the logarithmic residual of the physical–memory model, along with 

the model training, validation, and testing procedure, and the hyperparameter tuning strategy under a 

progressive temporal validation scheme; and (v) the conceptual model framework, which visually 

synthesizes the proposed architecture, the flow of information between components, and the generation of 

point predictions and conformal intervals. 

As a preliminary step before modeling, the daily series were temporally aligned, cleaned of missing values, 

and transformed using lags, moving averages, and harmonic terms, with the aim of preserving temporal 

coherence and avoiding information leakage between training and testing sets. 

For comparative purposes, two configurations of the proposed model were evaluated. The baseline 

configuration considers only the physical–astronomical proxy and simple temporal lags, without 

incorporating explicit harmonic terms or adaptive statistical correction. The optimized configuration 

corresponds to the full VEGA-RAD formulation, integrating stochastic memory, harmonic seasonality via 

Fourier series, and a machine learning–based statistical correction. Both configurations were evaluated 

under the same experimental protocol, enabling a direct and consistent comparison of their predictive 

performance in the Results section. 

2.3.1. Hybrid VEGA-RAD Formulation 

Solar radiation at point i and time t is defined as: 
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𝐺𝑖(𝑡) = Φ𝑖(𝑡) exp (𝑍𝑖
𝐶(𝑡) + 𝑍𝑖

𝑋 (𝑡) + 𝑍𝑖
𝐻(𝑡))    (1) 

Where Φ𝑖(𝑡) is the reference astronomical flux, 𝑍𝑖
𝐶(𝑡) represents the cloud cover contribution, 𝑍𝑖

𝑋 (𝑡) 

models the atmospheric composition (absorption, aerosols, and water vapor) and 𝑍𝑖
𝐻(𝑡) describes the local 

dynamics through stochastic memory. 

2.3.2. Block 1: Physical–Astronomical Proxy 

The reference component is calculated as: 

Φ𝑖(𝑡) = 𝐼0(𝑡)𝜏𝑎(𝑡) 𝑐𝑜𝑠𝜃𝑧(𝑡)   (2) 

Where Φ𝑖(𝑡) = 𝐼𝑠𝑐 (1 + 0.033𝑐𝑜𝑠
2𝜋𝑑

365
) represents the extraterrestrial radiation corrected for orbital 

eccentricity (with d as the Julian day), 𝜏𝑎(𝑡) is the large-scale atmospheric transmission coefficient and 

𝜃𝑧(𝑡) is the solar zenith angle. This block constitutes the deterministic component of the model, governed 

by celestial mechanics and large-scale atmospheric attenuation. 

2.3.3. Block 2: Stochastic Memory 

To capture the temporal dependence and annual seasonality of solar radiation, it is defined as: 

𝑍𝑖
𝐻(𝑡) = ∑ 𝛼𝑘𝐺𝑖(𝑡 − 𝑘) + ∑ [𝛽𝑚𝑠𝑖𝑛 (

2𝜋𝑚𝑡

365
) + 𝛾𝑚 cos(

2𝜋𝑚𝑡

365
)]𝑀

𝑚=1
𝑝
𝑘=1   (3) 

Where 𝑝 is the autoregressive order, 𝛼𝑘  measures the influence of past solar radiation values, 𝑀 is the 

number of Fourier harmonics used and capture intra- and (𝛽𝑚, 𝛾𝑚) interannual seasonal variation. 

2.3.4. Block 3: Adaptive Statistical Correction 

The logarithmic residual is defined as: 

𝑅𝑖(𝑡) = 𝑙𝑛𝐺𝑖
𝑜𝑏𝑠(𝑡) − 𝑙𝑛𝐺̂𝑖

𝑝𝑟𝑜𝑥𝑦
(𝑡)   (4) 

Where 𝐺𝑖
𝑜𝑏𝑠(𝑡)  is the observed solar radiation and 𝐺̂𝑖

𝑝𝑟𝑜𝑥𝑦(𝑡) = Φ𝑖(𝑡)exp (𝑍𝑖
𝐻(𝑡)) corresponds to the 

estimate generated by the physical–memory block. This residual is modeled using a machine learning 

algorithm: 

𝑅̂𝑖(𝑡) = 𝑓𝜃(𝑥𝑖(𝑡))     (5) 

Where 𝑥𝑖(𝑡) = {𝑐𝑙𝑜𝑢𝑑(𝑡), 𝑇2𝑚(𝑡), 𝑅𝐻(𝑇), 𝑤𝑖𝑛𝑑(𝑡), 𝑅𝑖(𝑡 − 𝑘)} is the vector of atmospheric predictors and 

temporal lags and 𝑓𝜃  corresponds to a HistGradientBoosting regressor. 

2.3.5. Final Prediction 

The estimated solar radiation is reconstructed as: 

𝐺̂𝑖(𝑡) = 𝐺̂𝑖
𝑝𝑟𝑜𝑥𝑦(𝑡) exp (𝑅̂𝑖(𝑡))   (6) 

In general terms, the VEGA-RAD model combines physical foundations, stochastic memory, and adaptive 

statistical correction to produce robust solar radiation predictions in Amazonian contexts. 

2.3.6. Model Training, Validation, and Testing 

The experimental procedure for the VEGA-RAD model was designed according to the temporal nature of 

the data and to prevent information leakage. The complete set of daily observations was chronologically 

ordered and partitioned following a temporal validation scheme, in which training data always precedes 

validation and test data. 

The machine learning–based statistical correction was applied to the logarithmic residual between the 

observed radiation and the physical–astronomical proxy. A Histogram-based Gradient Boosting Regressor 
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was used for model training, selected for its ability to capture complex nonlinear relationships while 

maintaining numerical stability and computational efficiency. 

Model tuning was performed using time-series cross-validation with a forward-chaining partitioning 

scheme, ensuring a realistic evaluation of predictive performance. 

The model’s performance was assessed on an independent test set using standard regression metrics, 

including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of 

determination (R²). Additionally, for probabilistic evaluation, conformal intervals were constructed on the 

test set to quantify the uncertainty associated with predictions and assess model calibration from a 

frequentist perspective. 

To prevent overfitting in the statistical correction stage, regularization mechanisms and early stopping 

were incorporated into the machine learning component. 

2.3.6.1. Hyperparameter Tuning 

Hyperparameter tuning was carried out systematically and in a controlled manner, taking into account the 

temporal nature of the data and the goal of avoiding overfitting. In the machine learning component, based 

on Histogram Gradient Boosting, hyperparameters related to model complexity and regularization were 

adjusted, including maximum tree depth, learning rate, number of boosting iterations, and regularization 

terms. Selection was performed using progressive temporal validation (forward chaining), seeking a 

balance between predictive capacity and model stability. 

Additionally, the structural hyperparameters of the VEGA-RAD model, such as the autoregressive order of 

the stochastic memory, the number of Fourier harmonics, and the moving average window lengths, were 

determined through exploratory analysis and preliminary comparative evaluation on the training set. Once 

selected, all hyperparameters were kept fixed during the final evaluation on the independent test set, 

ensuring the validity of the experimental protocol and the reproducibility of results. 

The final hyperparameter configuration used in the VEGA-RAD model is summarized in Table 2. 

Table 2. Final Hyperparameter Configuration of the VEGA-RAD Model 

Model Component Hyperparameter Value Used Description Selection Criterion 

Stochastic Memory 
Autoregressive 

order p (residual) 
p = 4 (lags: 1, 2, 

7, 14 days) 
Temporal dependence of 
the logarithmic residual 

Exploratory 
Evaluation during 

Training 

Stochastic Memory Cloud lags 1, 2, 7, 14 days Cloud persistence Residual Stability 

Clarity Index (CMF) CMF lags 1, 2, 7 days 
Atmospheric state 

smoothing 
Predictive 
Robustness 

Seasonality 
Fourier harmonics 

(M) 
3 

Capture of annual and 
intra-annual seasonality 

Spectral Analysis 

Temporal 
Smoothing 

Moving average 
window 

7 days 
High-frequency noise 

reduction 
Temporal Stability 

HGBR max_depth 8 Maximum tree depth Complexity Control 

HGBR max_iter 2200 
Number of boosting 

iterations 
Error Convergence 

HGBR learning_rate 0.045 Learning rate 
Bias–Variance 
Trade-off 

HGBR min_samples_leaf 15 Minimum samples per leaf 
Structural 

Regularization 

HGBR L2 regularization 5 × 10⁻³ L2 regularization 
Overfitting 
Prevention 

HGBR early_stopping Activated Automatic early stopping Numerical Stability 

HGBR validation_fraction 0.1 
Internal validation 

fraction 
Training Oversight 

HGBR n_iter_no_change 60 Early stopping patience Robust Convergence 
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2.4. Model Diagram 

This section presents the conceptual diagram of the VEGA-RAD model, aiming to visually summarize the 

model architecture, the flow of information between its components, and the processing sequence followed 

from the input meteorological data to the generation of point predictions and conformal intervals. 

 

Figure 2. Conceptual diagram of the VEGA-RAD model, illustrating the interaction between the physical–

astronomical proxy, stochastic memory, and statistical correction via machine learning, as well as the inclusion of 

conformal intervals for uncertainty quantification 

The full details of data preprocessing, the training scheme, hyperparameter selection, and the construction 

of conformal intervals are described in Sections 2.3.6, 2.3.6.1, and 3. 

3. RESULTS AND DISCUSSION 

This section presents and analyzes the results obtained with the VEGA-RAD model, applied to the daily 

prediction of solar radiation in the city of Tarapoto for the period from January 1, 2017, to September 26, 

2025. The analysis was conducted considering deterministic performance metrics as well as a probabilistic 

evaluation based on conformal intervals, with the aim of addressing the main objective of the study. 

The results presented below correspond to the evaluation of the VEGA-RAD model under a temporal 

validation scheme and an independent test set, according to the experimental protocol described in Section 

2.3.6. 

3.1. Evaluated Configurations: Base Model and Optimized Model  

To assess the impact of the different components of the VEGA-RAD model, two distinct experimental 

configurations were analyzed. The base configuration corresponds to a simplified formulation of the model, 

in which the solar radiation estimate is obtained from the physical–astronomical proxy and basic temporal 

lags, without incorporating advanced statistical correction mechanisms or explicit seasonal terms. 

In contrast, the optimized configuration integrates the full formulation of the VEGA-RAD model, 

incorporating the stochastic memory component, Fourier harmonic terms to capture annual seasonality, 

and an adaptive machine-learning-based statistical correction applied to the logarithmic residual. Both 

configurations were evaluated under the same temporal validation scheme and independent test set, 

ensuring a fair and consistent comparison of their predictive performance. 

3.2. Predictive Performance of the Model 

Table 3 summarizes the performance of the VEGA-RAD model under the two evaluated configurations for 

Tarapoto during the period 2017–2025. 

Table 3. Predictive Performance of the VEGA-RAD Model in Two Configurations  

Configuration MAE RMSE R2 

Base version 1.699 2.309 0.635 
Optimized version 0.477 1.459 0.854 

Note: MAE and RMSE are expressed in kWh/m²/d. The base version uses a clear-sky proxy and meteorological  

variables with simple lags. The optimized version incorporates the Clarity Index (CMF), cloud and residual lags, 

moving averages, and Fourier harmonic terms. Values were calculated over 3155 valid days from 2017–2025. 



 Agreda-Vega et al. 

8                                                                               Rev. Cient. Sist. Inform. 6(1): e1454; (Jan-Jun, 2026). e-ISSN: 2709-992X 

The base version achieved a mean absolute error (MAE) of 1.699 kWh/m²/d, a root mean square error 

(RMSE) of 2.309 kWh/m²/d, and a coefficient of determination R² = 0.635. In contrast, the optimized 

version reduced the MAE to 0.477 kWh/m²/d and the RMSE to 1.459 kWh/m²/d, increasing the coefficient 

of determination to R² = 0.854. 

3.3. Inferential analysis of predictive performance 

To evaluate whether the observed differences between the base and optimized configurations of the VEGA-

RAD model are statistically significant, an inferential analysis was conducted based on the paired 

comparison of daily errors on the independent test set. 

Given the temporal nature of the series and the lack of normality assumptions in the error distribution, the 

non-parametric Wilcoxon signed-rank test was applied. The analysis used the daily absolute errors from 

both model configurations, considering coincident time points in the test set. The alternative hypothesis 

stated that the optimized configuration systematically presents lower error than the base configuration. 

The test results showed a statistically significant difference in favor of the optimized model version (p < 

0.01). Additionally, a bootstrap analysis of the mean absolute error difference confirmed an average 

reduction of ΔMAE = 1.23 kWh/m²/d, with a 95% confidence interval [1.18; 1.27] kWh/m²/d, which does 

not include zero. These results confirm that the improvements observed in the global metrics are not due 

to random fluctuations but correspond to a structural effect associated with the incorporation of stochastic 

memory, harmonic seasonality, and adaptive statistical correction via machine learning. 

The results of the inferential analysis are summarized in Table 4, highlighting a statistically significant and 

robust improvement of the optimized VEGA-RAD model compared to the base version. 

Table 4. Inferential analysis of the predictive performance of the VEGA-RAD model 

Inferential analysis Evaluated metric Result Interpretation 

Paired Wilcoxon test 
Daily absolute error 

(MAE) 
p < 0.001 

Statistically significant difference in 
favor of the optimized version 

Bootstrap (B = 5000) Δ Mean MAE 1.23 kWh/m²/d Average reduction in absolute error 

Bootstrap (IC 95 %) ΔMAE [1.18, 1.27] kWh/m²/d 
Interval does not include 0; robust 

improvement 

Note: The inferential analysis was conducted on paired daily errors from the independent test set (n = 3170),  

considering coincident time points for both model configurations.  

3.4. Temporal Analysis of Predictions 

Figure 3 presents the temporal comparison between solar radiation observations from ERA5 and the 

central prediction generated by VEGA-RAD, along with the 90% conformal interval. The model accurately 

reproduced both the annual seasonality and daily variability of solar radiation, maintaining consistency 

with the characteristic climatic patterns of the region. 

During periods of high variability associated with increased cloudiness, the optimized version of the model 

showed greater stability and lower error dispersion, confirming the contribution of the stochastic memory 

and adaptive statistical correction components. 
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Figure 3. Daily Solar Radiation Prediction Using the VEGA-RAD Model for Tarapoto (2017–2025). The plot shows 

ERA5 observed values, the model’s central prediction, and the 90% conformal prediction interval  

To complement the visual analysis presented in Figure 3, the performance of the VEGA-RAD model was 

further evaluated by disaggregating it according to characteristic climatic periods of the Amazon region. 

Specifically, error metrics were analyzed for the dry and wet seasons using the independent test set. Results 

show that the mean absolute error (MAE) and root mean squared error (RMSE) are lower during the dry 

season (MAE = 0.323 kWh/m²/d; RMSE = 1.163 kWh/m²/d) and increase during the wet season (MAE = 

0.660 kWh/m²/d; RMSE = 1.757 kWh/m²/d), consistent with higher cloudiness and atmospheric 

variability. Nevertheless, the model maintains predictive stability and a consistent advantage in both 

climatic regimes, demonstrating the robustness of the VEGA-RAD approach under contrasting atmospheric 

conditions. The disaggregated values for each climatic period are summarized in Table 5. 

Table 5. Predictive performance of the VEGA-RAD model by climatic period (optimized version) 

Climatic period MAE (kWh/m²/d) RMSE (kWh/m²/d) n 
Dry season 0.323 1.163 1621 

Wet season 0.66 1.757 1549 

Note: The analysis was performed on the independent test set, considering temporal partitions consistent with the 

validation scheme described in Section 2.3.6. 

3.5. Probabilistic evaluation and uncertainty 

The probabilistic evaluation was conducted through the analysis of the coverage of the conformal intervals 

and their overall behavior, while uncertainty was assessed in terms of calibration, degree of conservatism, 

and temporal stability. 

In this context, the probabilistic evaluation using conformal intervals showed coverage consistent with the 

nominal 90 % and 95 % levels on the test set, as summarized in Table 6. In both cases, the coverage was 

equal to or greater than the nominal levels, indicating a conservatively calibrated but reliable performance 

of the conformal intervals. Consequently, VEGA-RAD not only provides accurate point estimates but also 

delivers prediction intervals that are reliable and well-calibrated from a frequentist perspective. 

Table 6. Probabilistic evaluation of the conformal intervals of the VEGA-RAD model on the test set for Tarapoto (2017–

2025) 

Nominal level Observed coverage Mean interval width (kWh/m²/d) CV of width Dataset 
90% 1 4.23 ≈ 0 Test 

95% 1 4.23 ≈ 0 Test 

Although the observed coverages for both nominal levels reached unity in the test set, this result can be 

interpreted as indicative of a slightly conservative behavior of the conformal intervals. Such conservatism 

aligns with the high atmospheric variability characteristic of the Amazonian context and the non-stationary 
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nature of daily solar radiation. Nevertheless, this behavior is desirable from a risk management perspective, 

as it prioritizes reliable coverage over underestimation of uncertainty. 

Additionally, the mean width of the conformal intervals remained stable throughout the test period, with a 

virtually null coefficient of variation, indicating a consistent quantification of uncertainty over time. This 

outcome reinforces the practical usefulness of the proposed approach for planning, designing, and 

operating photovoltaic systems in Amazonian contexts with high atmospheric variability. 

3.6. Discussion of Findings 

The results confirmed that integrating interpretable physical foundations with stochastic temporal 

memory and statistical correction via machine learning constitutes an effective strategy to address the high 

atmospheric variability characteristic of tropical regions. In particular, the reduction of over 70% in mean 

absolute error (MAE) between the base and optimized versions of VEGA-RAD highlighted the significant 

impact of incorporating memory terms, explicit seasonality, and adaptive learning, in line with recent 

trends reported in the literature on hybrid solar radiation prediction models and machine learning (Bakír, 

2024; Demir, 2025; Yadav et al., 2025; Zerouali et al., 2025). 

Recent studies have shown that machine learning–based approaches consistently outperform conventional 

statistical models by capturing complex nonlinearities in the atmosphere–surface system (Ghareeb et al., 

2025; Tandon et al., 2025). 

However, such works often rely on deep architectures with high complexity and limited physical 

interpretability. In contrast, the proposed model explicitly introduces an interpretable physical–

astronomical proxy coupled with a stochastic memory structure, addressing a recurring limitation 

identified in recent state-of-the-art reviews (Shringi et al., 2025). 

From a methodological perspective, the findings of this study are conceptually consistent with advances 

reported in hybrid CNN–SVR and CNN–LSTM approaches for daily solar radiation prediction (Ghimire et 

al., 2022; Hamdaouy et al., 2025; Şener & Tug al, 2025). Nevertheless, unlike these approaches, VEGA-RAD 

does not rely exclusively on automatic latent feature extraction but combines, in a parsimonious manner, 

physical knowledge, autoregressive lags, and gradient boosting–based statistical correction, achieving a 

favorable balance between performance, interpretability, and computational cost, as suggested by recent 

studies on lightweight hybrid models (Arseven & Çínar, 2025; Solano & Affonso, 2023). 

In the Amazonian context, the results align with studies using regional numerical models, such as WRF–

Solar, applied to estimate global horizontal solar radiation in northern Brazil (Amorim et al., 2024; Krishnan 

& Ravi Kumar, 2025; Alves et al., 2025). These works also highlight persistent cloudiness and intra- and 

interannual variability as the main challenges for solar radiation prediction in the region. However, while 

numerical models depend on complex physical parameterizations and high computational cost, VEGA-RAD 

demonstrates that a hybrid approach based on ERA5 reanalysis data can efficiently capture such variability 

with lower structural complexity, consistent with recent studies based on satellite and reanalysis data (Wu 

et al., 2025). 

A distinctive aspect of this work is the explicit incorporation of conformal intervals for predictive 

uncertainty quantification. The observed coverages, consistent with nominal levels of 90% and 95%, 

confirm the adequate probabilistic calibration of the model, extending the analysis beyond point metrics. 

This probabilistic approach responds to a growing need in energy planning and climate risk assessment, as 

discussed in recent studies on energy resilience and hybrid renewable systems (Cui et al., 2025; Jadhav & 

Bhawar, 2025; Vignesh Kumar et al., 2025). 

Overall, the results suggest that VEGA-RAD represents a relevant and original methodological contribution 

in the specific context of the Peruvian Amazon, coherently integrating an interpretable physical–
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astronomical proxy, stochastic memory, machine learning–based statistical correction, and explicit 

uncertainty quantification within a unified framework. 

While individual components of this approach have been previously explored in the literature, their 

systematic integration under a temporal validation scheme, rigorous inferential analysis, and probabilistic 

evaluation using conformal intervals has not been jointly reported for Amazonian regions characterized by 

high atmospheric variability. In this sense, VEGA-RAD positions itself as a robust, interpretable, and 

reproducible alternative to purely physical or data-driven approaches, helping to fill methodological gaps 

identified in recent area reviews (Shringi et al., 2025; Zerouali et al., 2025). 

CONCLUSIONS 

In this study, a hybrid model named VEGA-RAD (Vega Radiative Adaptive Dynamics) was formulated and 

evaluated, designed for daily solar radiation prediction in the Peruvian Amazon. The model coherently 

integrates an interpretable physical–astronomical proxy, a stochastic temporal memory component, and an 

adaptive machine learning–based statistical correction stage. This formulation enabled the simultaneous 

capture of the physical structure of the radiative process, temporal persistence, and residual nonlinearities 

associated with local meteorological variables, while maintaining a parsimonious and reproducible 

architecture. 

Predictive and inferential analyses demonstrated substantial improvements in the performance of the 

optimized version compared to the base configuration, with reductions of over 70% in mean absolute error 

and significant increases in the coefficient of determination. These improvements were supported by 

paired inferential analysis (Wilcoxon test) and nonparametric bootstrap resampling, confirming that the 

observed differences are not attributable to chance. Additionally, the inclusion of conformal intervals 

allowed for explicit quantification of predictive uncertainty, achieving coverages consistent with nominal 

levels and exhibiting conservative and stable behavior over time. 

Overall, VEGA-RAD positions itself as a robust, interpretable, and reliable alternative for solar radiation 

prediction in tropical regions with high climatic variability, offering direct utility for the planning and 

management of photovoltaic systems. 
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APPENDIX 

Appendix A.1. Example of an Open-Meteo API (ERA5) query 

In order to ensure the reproducibility of the study, an example of the HTTP request used to download daily 

ERA5 reanalysis data via the Open-Meteo API is presented below, corresponding to the city of Tarapoto 

(Peru) and the period from January 1, 2017 to September 26, 2025. 

The query example is provided for illustrative purposes only, with the aim of documenting access to the 

data source used. The complete computational implementation, including variable preprocessing, model 

training, and experimental evaluation, was carried out in Python within a reproducible Google Colab–based 

environment and is available upon reasonable request to the corresponding author. 

https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-

01&end_date=2025-09-

26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mea

n,windspeed_10m_max&timezone=UTC  

https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-01&end_date=2025-09-26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mean,windspeed_10m_max&timezone=UTC
https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-01&end_date=2025-09-26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mean,windspeed_10m_max&timezone=UTC
https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-01&end_date=2025-09-26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mean,windspeed_10m_max&timezone=UTC
https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-01&end_date=2025-09-26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mean,windspeed_10m_max&timezone=UTC
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Note: For execution in Python, this query was implemented using the requests library, as shown in the 

reproducible code used in this study. 

import requests 

url = "https://archive-api.open-meteo.com/v1/era5" 

params = { 

    "latitude": -6.5, 

    "longitude": -76.3, 

    "start_date": "2017-01-01", 

    "end_date": "2025-09-26", 

    "daily": [ 

        "shortwave_radiation_sum", 

        "cloudcover_mean", 

        "temperature_2m_mean", 

        "relative_humidity_2m_mean", 

        "windspeed_10m_max" 

    ], 

    "timezone": "UTC" 

} 

r = requests.get(url, params=params) 

data = r.json() 

 


