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ABSTRACT

Daily solar radiation forecasting in the Peruvian Amazon represents a relevant challenge due to the high atmospheric
variability that characterizes the region. In this study, VEGA-RAD (Vega Radiative Adaptive Dynamics) is formulated and
evaluated as a hybrid physical-statistical model for daily solar radiation prediction in tropical environments. The model
integrates an interpretable physical-astronomical proxy, stochastic temporal memory, and an adaptive statistical correction
based on machine learning to capture residual nonlinearities. The analysisis conducted using daily ERA5 reanalysis data for
the period 2017-2025, obtained through the Open-Meteo API. The results show a reduction in mean absolute error (MAE)
from 1.699 to 0.477 kWh/m?/d and an increase in the coefficient of determination (R?) from 0.635 to 0.854. These
improvements are supported by paired inferential analysis (Wilcoxon) and non-parametric bootstrap resampling. In addition,
conformal prediction intervals achieve coverage levels consistent with the nominal 90 % and 95 % levels, with a temporally
stable average width, indicating a conservative and reliable quantification of predictive uncertainty. The proposed VEGA-RAD
model is presented as a reproducible, interpretable, and robust tool for energy applications in Amazonian contexts.

Keywords: machine learning; climate uncertainty; hybrid model; daily solar radiation

RESUMEN

La prediccién diaria de la radiacién solar en la Amazonia peruana es un desafio relevante debido a su elevada variabilidad
atmosférica. En este estudio se formula y evalia VEGA-RAD (Vega Radiative Adaptive Dynamics), un modelo hibrido fisico-
estadistico parala prediccion diaria de radiacion solar en regiones tropicales. Elmodelo integra un proxy fisico-astronémico,
memoria temporal estocdstica y una correccion estadistica adaptativa basada en aprendizaje automadtico para capturar no
linealidades residuales. El analisis se realizé con datos diarios ERA5 (2017-2025) obtenidos mediante la API de Open-Meteo.
Los resultados muestran una reduccién del MAE de 1.699 a 0.477 kWh/m?/d y un aumento del R* de 0.635 a 0.854. Estas
mejoras fueron confirmadas mediante andlisis inferencial pareado (Wilcoxon) y remuestreo bootstrap. Ademas, los intervalos
conformales alcanzan coberturas coherentes con los niveles nominales del 90 % y 95 %, con ancho medio estable en el tiempo,
con ancho medio estable, evidenciando una cuantificacién de la incertidumbre conservadora y confiable. El modelo hibrido
“VEGA-RAD” se presenta como una herramienta reproducible, interpretable y robusta para aplicaciones energéticas en
contextos amazonicos.

Palabras clave: aprendizaje automatico; incertidumbre climatica; modelo hibrido; radiacién solar diaria
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1. INTRODUCTION

Solar radiation prediction is a central issue for the efficient integration of renewable energy into modern
electrical systems. The high spatiotemporal variability of solar radiation affects the sizing of photovoltaic
plants, the stability of power grids, and the formulation of sustainable energy policies, particularly in
regions with high climatic complexity (Bakir, 2024; Demir, 2025; Shringi et al., 2025; Tandon et al., 2025;
Yadav et al., 2025; Zerouali et al., 2025).

In tropical regions such as the Peruvian Amazon, this challenge is intensified due to persistent cloud cover,
pronounced seasonality, and the scarcity of reliable meteorological stations. In this context, global
reanalysis products have emerged as a robust alternative for characterizing solar radiation and associated
atmospheric variables (Hersbach et al., 2020; Huang et al., 2021).

Among these sources, ERA5 stands out for its temporal consistency, global spatial coverage, and extensive
validation across multiple climatic zones. Its open access through programming interfaces facilitates
reproducibility and methodological transparency in solar radiation prediction studies (Demir, 2025; Open-
Meteo, 2025).

In parallel, advances in machine learning and deep learning have enabled models capable of capturing
complex nonlinear relationships between solar radiation and atmospheric factors. In particular, hybrid
approaches based on CNN-SVR, CNN-LSTM, and metaheuristic optimization show substantial
improvements in daily solar radiation prediction across different climates (Ghimire et al., 2022; Hamdaouy
etal., 2025; Y.H. et al., 2024; Raju et al., 2025; Sener & Tugal, 2025).

Recent review studies confirm that hybrid models dominate the state of the art by integrating physical
knowledge, algorithmic optimization, and adaptive learning, consistently outperforming purely statistical
or physical approaches (Celik et al., 2025; Ghareeb et al., 2025; Rajput et al., 2025; Shringi et al., 2025).

For intra-hour and intraday horizons, multimodal architectures that combine sky images with
meteorological variables allow for highly accurate forecasting of rapid cloud changes. Proposals such as
SkyNet and other multimodal models demonstrate high robustness against atmospheric variability (Abad-
Alcaraz et al., 2025; Hou et al,, 2025; Ruan et al,, 2026).

Additionally, multiscale decomposition techniques, wavelet transforms, and ensemble methods reinforce
predictive stability. The use of photovoltaic power data, satellite products, and exogenous variables also

improves the representation of radiative dynamics (Arseven & Cinar, 2025; Cui et al., 2025; Solano &
Affonso, 2023; Wu et al.,, 2025; Yan et al., 2025).

Other environmental factors, such as air quality, have emerged as relevant predictors of solar radiation
attenuation. Recent studies show that including atmospheric pollutants significantly enhances the accuracy
of machine learning-based models (Aladwani et al., 2025; Hu et al.,, 2025).

In medium- and long-term energy planning, evaluations based on bias-corrected CMIP6 projections and
downscaling provide regional evidence of future changes in solar radiation. In this context, regional
numerical models such as WRF-Solarand UV solar radiation studies confirm the high climate sensitivity of
tropical regions (Amorim et al., 2024; Gao et al., 2025; Jadhav & Bhawar, 2025; Krishnan & Ravi Kumar,
2025; Vignesh Kumar et al., 2025; Alves et al,, 2025; Zhu et al., 2025).

Despite these advances, a scientific gap remains in the development of models specifically designed for the
Peruvian Amazon that integrate interpretable physical foundations, stochastic temporal memory, adaptive
statistical correction, and explicit uncertainty quantification. In response to this gap, the present work
proposes and formulates an original hybrid model called VEGA-RAD (Vega Radiative Adaptive Dynamics),
aimed at daily solar radiation prediction using ERA5 data and well-calibrated point and probabilistic
estimates.
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2. MATERIALS AND METHODS
2.1.Study Area

The study area corresponds to the city of Tarapoto, located in the Peruvian Amazon (latitude -6.5°,
longitude -76.3°). The region has a humid tropical climate, characterized by persistent cloud cover, high
relative humidity, and pronounced intra- and interannual variability in solar radiation. These conditions
make Tarapoto a particularly challenging environment for solar radiation prediction and the planning of
photovoltaic systems.

2.2.Data

Daily ERAS reanalysis data were obtained via the Open-Meteo API, an open-access platform that provides
climate reanalysis products through RESTful web services. Specifically, the programmatic access endpoint
for ERAS is available at: https://archive-api.open-meteo.com/v1/era5

Data access was carried out through parameterized HTTP requests, specifying geographic coordinates, the
time period, and the meteorological variables of interest. Official API documentation and query examples
are available on the Open-Meteo portal (https://open-meteo.com/). The data were downloaded on
September 26, 2025.

Table 1. Sample of Daily ERA5 Reanalysis Records for Tarapoto (01.01.2017-26.09.2025). Units: GHI in kWh/m?/d,
cloud cover in %, temperature in °C, relative humidity in %, and wind speed in m/s

Date GHI cloud t2m rh2m wind
1 01/2017 12.56 99 22.9 95 6.2
2 01/2017 17.56 88 23.3 87 10.6
3 01/2017 23.65 73 24.7 77 11.1
4 01/2017 18.3 88 25.2 75 14.8
5 01/2017 10.48 98 23.3 87 8.8

Table 1 presents a representative sample of the daily ERAS reanalysis records, highlighting the joint
variability between global solar radiation and the associated meteorological variables.

Observed daily global solar radiation (Tarapoto, 2017-2025)
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Figure 1. Time series of observed global horizontal solar radiation (ERA5) for Tarapoto (2017-2025). Annual

seasonality and high daily variability associated with cloud cover and atmospheric conditions are evident

Figure 1 shows the continuous evolution of daily GHI, revealing seasonal and interannual patterns
characteristic of the Amazonian climate, which justifies the use of a hybrid approach with temporal
memory.

2.2.1. Data Preprocessing
Priorto the formulation and training of the VEGA-RAD model, daily ERA5 reanalysis data were subjected to

a preprocessing procedure aimed at ensuring temporal coherence, numerical stability, and reproducibility
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of the analysis. First, the downloaded records were organized chronologically, and days with missing values
in any of the considered variables were discarded, resulting in a final dataset composed exclusively of
complete observations.

Since ERAS productsincorporate global-scale quality control procedures, no additional outlier detection or
removal methods were applied, in order to preserve physically plausible extremes associated with intense
atmospheric events characteristic of the Amazonian climate. Likewise, no imputation of missing values was
performed, as the analysis was restricted to days with complete information.

As part of temporal aggregation, daily series were used directly, consistent with the prediction horizon of
the study. Fromthese series, a physical-astronomical solar radiation proxy was constructed as a reference,
serving as the deterministic component of the model, and a logarithmic residual between the observed
radiation and this reference was defined, which constitutes the target variable for the machine learning
block.

To capture temporal dependence and atmospheric persistence, lags of cloud cover and the residual were
generated over short- and medium-term windows, along with moving averages summarizing the recent
system dynamics. Additionally, Fourier harmonic terms based on the day of the year were incorporated to
explicitly model the annual seasonality of solar radiation.

No dimensionality reduction techniques, such as principal component analysis (PCA), were applied, since
one of the objectives of VEGA-RAD is to preserve the physical interpretability of atmospheric variables and
their transformations. All variables were used on scales consistent with their physical meaning, ensuring
transparent integration between the physical, stochastic, and statistical components of the model.

2.3.Methodology

This section presents the methodological formulation of the proposed hybrid model, VEGA-RAD (Vega
Radiative Adaptive Dynamics), developed for daily solar radiation prediction in the Peruvian Amazon. The
methodology is structured into five clearly defined sequential components: (i) the hybrid VEGA-RAD
formulation, which integrates physical foundations and stochastic memory with an adaptive statistical
correction stage; (ii) the physical-astronomical proxy block, responsible for modeling reference solar
radiation based on celestial mechanics principles; (iii) the stochastic memory block, which captures the
temporal dependence and annual seasonality of solar radiation; (iv) the adaptive machine learning—based
statistical correction block, applied to the logarithmic residual of the physical-memory model, along with
the model training, validation, and testing procedure, and the hyperparameter tuning strategy under a
progressive temporal validation scheme; and (v) the conceptual model framework, which visually
synthesizes the proposed architecture, the flow of information between components, and the generation of
point predictions and conformal intervals.

As a preliminary step before modeling, the daily series were temporally aligned, cleaned of missing values,
and transformed using lags, moving averages, and harmonic terms, with the aim of preserving temporal
coherence and avoiding information leakage between training and testing sets.

For comparative purposes, two configurations of the proposed model were evaluated. The baseline
configuration considers only the physical-astronomical proxy and simple temporal lags, without
incorporating explicit harmonic terms or adaptive statistical correction. The optimized configuration
corresponds to the full VEGA-RAD formulation, integrating stochastic memory, harmonic seasonality via
Fourier series, and a machine learning-based statistical correction. Both configurations were evaluated
under the same experimental protocol, enabling a direct and consistent comparison of their predictive
performance in the Results section.

2.3.1. Hybrid VEGA-RAD Formulation

Solar radiation at point i and time ¢ is defined as:
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Gi(t) = ®; (D exp (26 (0 + ZF (©) + 28 (1)) (1)

Where @, (t) is the reference astronomical flux, Z lC (t) represents the cloud cover contribution, Z¥ (t)
models the atmospheric composition (absorption, aerosols, and water vapor) and Z {1 (t) describes the local
dynamics through stochastic memory.

2.3.2. Block 1: Physical-Astronomical Proxy

The reference component is calculated as:

@;(t) = Io(t)T4(t) cosb,(t) (2)

d . — .
Where @;(t) = I, (1 + 0.033cos %) represents the extraterrestrial radiation corrected for orbital

eccentricity (with d as the Julian day), 7,(t) is the large-scale atmospheric transmission coefficient and
0, (t) is the solar zenith angle. This block constitutes the deterministic component of the model, governed
by celestial mechanics and large-scale atmospheric attenuation.

2.3.3. Block 2: Stochastic Memory

To capture the temporal dependence and annual seasonality of solar radiation, it is defined as:

ZH(®) = Z8_ Gyt — k) + ZM_, [Bsin (Z2) + v cos (2)] (3)

Where p is the autoregressive order, a; measures the influence of past solar radiation values, M is the
number of Fourier harmonics used and capture intra- and (£, ¥;n) interannual seasonal variation.

2.3.4. Block 3: Adaptive Statistical Correction
The logarithmic residual is defined as:
R;(6) = InGPP (¢) — InG™ "™ (1) (4)

Where Gl-"bs (t) is the observed solar radiation and Gip "V (1) = d;(t)exp (ZH(£)) corresponds to the
estimate generated by the physical-memory block. This residual is modeled using a machine learning
algorithm:

Ri(®) = fo(x; () (5)

Where x;(t) = {cloud(t), Ty, (t), RH(T),wind(t),R;(t — k) }is the vector of atmospheric predictors and
temporal lags and fy corresponds to a HistGradientBoosting regressor.

2.3.5. Final Prediction
The estimated solar radiation is reconstructed as:
Gi() = 67" (© exp (Ri(®) (6)

In general terms, the VEGA-RAD model combines physical foundations, stochastic memory, and adaptive
statistical correction to produce robust solar radiation predictions in Amazonian contexts.

2.3.6. Model Training, Validation, and Testing

The experimental procedure for the VEGA-RAD model was designed according to the temporal nature of
the data and to prevent information leakage. The complete set of daily observations was chronologically
ordered and partitioned following a temporal validation scheme, in which training data always precedes
validation and test data.

The machine learning-based statistical correction was applied to the logarithmic residual between the
observed radiation and the physical-astronomical proxy. A Histogram-based Gradient Boosting Regressor

5 Rev. Cient. Sist. Inform. 6(1):e1454; (Jan-Jun, 2026). e-ISSN: 2709-992X




Agreda-Vega et al.

RCSI

was used for model training, selected for its ability to capture complex nonlinear relationships while
maintaining numerical stability and computational efficiency.

Model tuning was performed using time-series cross-validation with a forward-chaining partitioning
scheme, ensuring a realistic evaluation of predictive performance.

The model’s performance was assessed on an independent test set using standard regression metrics,
including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of
determination (R?). Additionally, for probabilistic evaluation, conformal intervals were constructed on the
test set to quantify the uncertainty associated with predictions and assess model calibration from a
frequentist perspective.

To prevent overfitting in the statistical correction stage, regularization mechanisms and early stopping
were incorporated into the machine learning component.

2.3.6.1. Hyperparameter Tuning

Hyperparameter tuning was carried out systematically and in a controlled manner, taking into account the
temporal nature of the data and the goal of avoiding overfitting. In the machine learning component, based
on Histogram Gradient Boosting, hyperparameters related to model complexity and regularization were
adjusted, including maximum tree depth, learning rate, number of boosting iterations, and regularization
terms. Selection was performed using progressive temporal validation (forward chaining), seeking a
balance between predictive capacity and model stability.

Additionally, the structural hyperparameters of the VEGA-RAD model, such as the autoregressive order of
the stochastic memory, the number of Fourier harmonics, and the moving average window lengths, were
determined through exploratory analysis and preliminary comparative evaluation on the training set. Once
selected, all hyperparameters were kept fixed during the final evaluation on the independent test set,
ensuring the validity of the experimental protocol and the reproducibility of results.

The final hyperparameter configuration used in the VEGA-RAD model is summarized in Table 2.

Table 2. Final Hyperparameter Configuration of the VEGA-RAD Model

Model Component | Hyperparameter Value Used Description Selection Criterion
Autoregressive =4 (lags: 1,2 Temporal dependence of Exploratory
Stochastic Memory gres P 55 4 4 poral Cepe . Evaluation during
order p (residual) 7, 14 days) the logarithmic residual .
Training
Stochastic Memory Cloud lags 1, 2,7, 14 days Cloud persistence Residual Stability
. Atmospheric state Predictive
Clarity Index (CMF) CMF lags 1, 2, 7 days smoothing Robustness
. Fourier harmonics Capture of annual and .
Seasonality M) 3 intra-annual _seasonality Spectral Analysis
Temporal Moving average High-frequency noise .
Smoothing window 7 days reduction Temporal Stability
HGBR max_depth 8 Maximum tree depth Complexity Control
HGBR max_iter 2200 Numt?er Of. boosting Error Convergence
iterations
. . Bias-Variance
HGBR learning rate 0.045 Learning rate Trade-off
HGBR min_samples_leaf 15 Minimum samples per leaf Struc'Fura'l
Regularization
HGBR L2 regularization 5x 1073 L2 regularization l())verfltt}ng
revention
HGBR early_stopping Activated Automatic early stopping Numerical Stability
HGBR validation_fraction 0.1 Internal Vzlahdatlon Training Oversight
fraction
HGBR n_iter_no_change 60 Early stopping patience Robust Convergence
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2.4.Model Diagram

This section presents the conceptual diagram of the VEGA-RAD model, aiming to visually summarize the
model architecture, the flow of information between its components, and the processing sequence followed
from the input meteorological data to the generation of point predictions and conformal intervals.

Meteorological Physical-astronomical Stochastic Z % ; Conformal
dat Base model Statistical correction i
ata proxy memory prediction
GHI, cloud cover, [ Clear-sky radiation Temporal ¥ Physicalproxy+ [»  Machine Learning % intervals
air temperature (T2m) ) persistence and stochastic memory (HistGradientBoosting) 90% and 95%
relative humidity, seasonality uncertainty bands
wind speed

Figure 2. Conceptual diagram of the VEGA-RAD model, illustrating the interaction between the physical-
astronomical proxy, stochastic memory, and statistical correction via machine learning, as well as the inclusion of
conformal intervals for uncertainty quantification

The full details of data preprocessing, the training scheme, hyperparameter selection, and the construction
of conformal intervals are described in Sections 2.3.6, 2.3.6.1, and 3.

3. RESULTS AND DISCUSSION

This section presents and analyzes the results obtained with the VEGA-RAD model, applied to the daily
prediction of solar radiation in the city of Tarapoto for the period from January 1, 2017, to September 26,
2025. The analysis was conducted considering deterministic performance metrics as well as a probabilistic
evaluation based on conformal intervals, with the aim of addressing the main objective of the study.

The results presented below correspond to the evaluation of the VEGA-RAD model under a temporal
validation scheme and an independent test set, according to the experimental protocol described in Section
2.3.6.

3.1.Evaluated Configurations: Base Model and Optimized Model

To assess the impact of the different components of the VEGA-RAD model, two distinct experimental
configurations were analyzed. The base configuration corresponds to a simplified formulation of the model],
in which the solar radiation estimate is obtained from the physical-astronomical proxy and basic temporal
lags, without incorporating advanced statistical correction mechanisms or explicit seasonal terms.

In contrast, the optimized configuration integrates the full formulation of the VEGA-RAD model,
incorporating the stochastic memory component, Fourier harmonic terms to capture annual seasonality,
and an adaptive machine-learning-based statistical correction applied to the logarithmic residual. Both
configurations were evaluated under the same temporal validation scheme and independent test set,
ensuring a fair and consistent comparison of their predictive performance.

3.2.Predictive Performance of the Model

Table 3 summarizes the performance of the VEGA-RAD model under the two evaluated configurations for
Tarapoto during the period 2017-2025.

Table 3. Predictive Performance of the VEGA-RAD Model in Two Configurations

Configuration MAE RMSE R2
Base version 1.699 2.309 0.635
Optimized version 0.477 1.459 0.854

Note: MAE and RMSE are expressed in kWh/m?/d. The base version uses a clear-sky proxy and meteorological
variables with simple lags. The optimized version incorporates the Clarity Index (CMF), cloud and residual lags,
moving averages, and Fourier harmonic terms. Values were calculated over 3155 valid days from 2017-2025.
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The base version achieved a mean absolute error (MAE) of 1.699 kWh/m?/d, a root mean square error
(RMSE) of 2.309 kWh/m?/d, and a coefficient of determination R* = 0.635. In contrast, the optimized
version reduced the MAE to 0.477 kWh/m?/d and the RMSE to 1.459 kWh/m?/d, increasing the coefficient
of determination to R? = 0.854.

3.3.Inferential analysis of predictive performance

To evaluate whether the observed differences between the base and optimized configurations of the VEGA-
RAD model are statistically significant, an inferential analysis was conducted based on the paired
comparison of daily errors on the independent test set.

Given the temporal nature of the series and the lack of normality assumptions in the error distribution, the
non-parametric Wilcoxon signed-rank test was applied. The analysis used the daily absolute errors from
both model configurations, considering coincident time points in the test set. The alternative hypothesis
stated that the optimized configuration systematically presents lower error than the base configuration.

The test results showed a statistically significant difference in favor of the optimized model version (p <
0.01). Additionally, a bootstrap analysis of the mean absolute error difference confirmed an average
reduction of AMAE = 1.23 kWh/m?/d, with a 95% confidence interval [1.18; 1.27] kWh/m?/d, which does
not include zero. These results confirm that the improvements observed in the global metrics are not due
to random fluctuations but correspond to a structural effect associated with the incorporation of stochastic
memory, harmonic seasonality, and adaptive statistical correction via machine learning.

The results of the inferential analysis are summarized in Table 4, highlighting a statistically significant and
robust improvement of the optimized VEGA-RAD model compared to the base version.

Table 4. Inferential analysis of the predictive performance of the VEGA-RAD model

Inferential analysis Evaluated metric Result Interpretation
. . Daily absolute error Statistically significant difference in
Paired Wilcoxon test (MAE) p < 0.001 favor of the optimized version
Bootstrap (B = 5000) A Mean MAE 1.23 kWh/m?/d Average reduction in absolute error
Bootstrap (IC 95 %) AMAE [1.18, 1.27] kWh/m?/q | [nterval does not include 0; robust
Improvement

Note: The inferential analysis was conducted on paired daily errors from the independent test set (n = 3170),
considering coincident time points for both model configurations.

3.4. Temporal Analysis of Predictions

Figure 3 presents the temporal comparison between solar radiation observations from ERA5 and the
central prediction generated by VEGA-RAD, along with the 90% conformal interval. The model accurately
reproduced both the annual seasonality and daily variability of solar radiation, maintaining consistency
with the characteristic climatic patterns of the region.

During periods of high variability associated withincreased cloudiness, the optimized version of the model
showed greater stability and lower error dispersion, confirming the contribution of the stochastic memory
and adaptive statistical correction components.
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Daily solar radiation prediction using VEGA-RAD (2017-2025)

30

251

20

15 1

10 A

Global solar radiation (kWh/m2?/day)

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
Date

—— Observed GHI (ERAS5) —— VEGA-RAD prediction 90% conformal prediction interval

Figure 3. Daily Solar Radiation Prediction Using the VEGA-RAD Model for Tarapoto (2017-2025). The plot shows
ERAS observed values, the model’s central prediction, and the 90% conformal prediction interval

To complement the visual analysis presented in Figure 3, the performance of the VEGA-RAD model was
further evaluated by disaggregating it according to characteristic climatic periods of the Amazon region.
Specifically, error metrics were analyzed for the dry and wet seasons using the independent test set. Results
show that the mean absolute error (MAE) and root mean squared error (RMSE) are lower during the dry
season (MAE = 0.323 kWh/m?/d; RMSE = 1.163 kWh/m?/d) and increase during the wet season (MAE =
0.660 kWh/m?/d; RMSE = 1.757 kWh/m?/d), consistent with higher cloudiness and atmospheric
variability. Nevertheless, the model maintains predictive stability and a consistent advantage in both
climatic regimes, demonstrating the robustness of the VEGA-RAD approach under contrasting atmospheric
conditions. The disaggregated values for each climatic period are summarized in Table 5.

Table 5. Predictive performance of the VEGA-RAD model by climatic period (optimized version)

Climatic period MAE (kWh/m?/d) RMSE (kWh/m?/d) n
Dry season 0.323 1.163 1621
Wet season 0.66 1.757 1549

Note: The analysis was performed on the independent test set, considering temporal partitions consistent with the
validation scheme described in Section 2.3.6.

3.5.Probabilistic evaluation and uncertainty

The probabilistic evaluation was conducted through the analysis of the coverage of the conformal intervals
and their overall behavior, while uncertainty was assessed in terms of calibration, degree of conservatism,
and temporal stability.

In this context, the probabilistic evaluation using conformal intervals showed coverage consistent with the
nominal 90 % and 95 % levels on the test set, as summarized in Table 6. In both cases, the coverage was
equal to or greater than the nominal levels, indicating a conservatively calibrated but reliable performance
of the conformal intervals. Consequently, VEGA-RAD not only provides accurate point estimates but also
delivers prediction intervals that are reliable and well-calibrated from a frequentist perspective.

Table 6. Probabilistic evaluation of the conformal intervals of the VEGA-RAD model on the test set for Tarapoto (2017-
2025)

Nominal level | Observed coverage Mean interval width (kWh/m?/d) CV of width Dataset
90% 1 4.23 =0 Test
95% 1 4.23 =0 Test

Although the observed coverages for both nominal levels reached unity in the test set, this result can be
interpreted as indicative of a slightly conservative behavior of the conformal intervals. Such conservatism
aligns with the high atmospheric variability characteristic of the Amazonian contextand the non-stationary
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nature of daily solar radiation. Nevertheless, this behavior is desirable from a risk management perspective,
as it prioritizes reliable coverage over underestimation of uncertainty.

Additionally, the mean width of the conformal intervals remained stable throughout the test period, with a
virtually null coefficient of variation, indicating a consistent quantification of uncertainty over time. This
outcome reinforces the practical usefulness of the proposed approach for planning, designing, and
operating photovoltaic systems in Amazonian contexts with high atmospheric variability.

3.6.Discussion of Findings

The results confirmed that integrating interpretable physical foundations with stochastic temporal
memory and statistical correction viamachine learning constitutes an effective strategy to address the high
atmospheric variability characteristic of tropical regions. In particular, the reduction of over 70% in mean
absolute error (MAE) between the base and optimized versions of VEGA-RAD highlighted the significant
impact of incorporating memory terms, explicit seasonality, and adaptive learning, in line with recent
trends reported in the literature on hybrid solar radiation prediction models and machine learning (Baki
2024; Demir, 2025; Yadav et al,, 2025; Zerouali et al., 2025).

Recent studies have shown that machine learning-based approaches consistently outperform conventional
statistical models by capturing complex nonlinearities in the atmosphere-surface system (Ghareeb et al,,
2025; Tandon et al.,, 2025).

However, such works often rely on deep architectures with high complexity and limited physical
interpretability. In contrast, the proposed model explicitly introduces an interpretable physical-
astronomical proxy coupled with a stochastic memory structure, addressing a recurring limitation
identified in recent state-of-the-art reviews (Shringi et al., 2025).

From a methodological perspective, the findings of this study are conceptually consistent with advances
reported in hybrid CNN-SVR and CNN-LSTM approaches for daily solar radiation prediction (Ghimire et
al,, 2022; Hamdaouy et al., 2025; Sener & Tugal, 2025). Nevertheless, unlike these approaches, VEGA-RAD
does not rely exclusively on automatic latent feature extraction but combines, in a parsimonious manner,
physical knowledge, autoregressive lags, and gradient boosting-based statistical correction, achieving a
favorable balance between performance, interpretability, and computational cost, as suggested by recent
studies on lightweight hybrid models (Arseven & Cinar, 2025; Solano & Affonso, 2023).

In the Amazonian context, the results align with studies using regional numerical models, such as WRF-
Solar, applied to estimate global horizontal solar radiation in northern Brazil (Amorim et al., 2024; Krishnan
& Ravi Kumar, 2025; Alves et al., 2025). These works also highlight persistent cloudiness and intra- and
interannual variability as the main challenges for solar radiation prediction in the region. However, while
numerical models depend on complex physical parameterizations and high computational cost, VEGA-RAD
demonstrates that a hybrid approach based on ERA5 reanalysis data can efficiently capture such variability
with lower structural complexity, consistent with recent studies based on satellite and reanalysis data (Wu
etal, 2025).

A distinctive aspect of this work is the explicit incorporation of conformal intervals for predictive
uncertainty quantification. The observed coverages, consistent with nominal levels of 90% and 95%,
confirm the adequate probabilistic calibration of the model, extending the analysis beyond point metrics.
This probabilistic approach responds to a growing need in energy planning and climate risk assessment, as
discussed in recent studies on energy resilience and hybrid renewable systems (Cui et al.,, 2025; Jadhav &
Bhawar, 2025; Vignesh Kumar et al., 2025).

Overall, the results suggest that VEGA-RAD represents a relevant and original methodological contribution
in the specific context of the Peruvian Amazon, coherently integrating an interpretable physical-
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astronomical proxy, stochastic memory, machine learning-based statistical correction, and explicit
uncertainty quantification within a unified framework.

While individual components of this approach have been previously explored in the literature, their
systematic integration under a temporal validation scheme, rigorous inferential analysis, and probabilistic
evaluation using conformal intervals has not been jointly reported for Amazonian regions characterized by
high atmospheric variability. In this sense, VEGA-RAD positions itself as a robust, interpretable, and
reproducible alternative to purely physical or data-driven approaches, helping to fill methodological gaps
identified in recent area reviews (Shringi et al., 2025; Zerouali et al., 2025).

CONCLUSIONS

In this study, a hybrid model named VEGA-RAD (Vega Radiative Adaptive Dynamics) was formulated and
evaluated, designed for daily solar radiation prediction in the Peruvian Amazon. The model coherently
integrates an interpretable physical-astronomical proxy, a stochastic temporal memory component, and an
adaptive machine learning-based statistical correction stage. This formulation enabled the simultaneous
capture of the physical structure of the radiative process, temporal persistence, and residual nonlinearities
associated with local meteorological variables, while maintaining a parsimonious and reproducible
architecture.

Predictive and inferential analyses demonstrated substantial improvements in the performance of the
optimized version compared to the base configuration, with reductions of over 70% in mean absolute error
and significant increases in the coefficient of determination. These improvements were supported by
paired inferential analysis (Wilcoxon test) and nonparametric bootstrap resampling, confirming that the
observed differences are not attributable to chance. Additionally, the inclusion of conformal intervals
allowed for explicit quantification of predictive uncertainty, achieving coverages consistent with nominal
levels and exhibiting conservative and stable behavior over time.

Overall, VEGA-RAD positions itself as a robust, interpretable, and reliable alternative for solar radiation
prediction in tropical regions with high climatic variability, offering direct utility for the planning and
management of photovoltaic systems.
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APPENDIX
Appendix A.1. Example of an Open-Meteo API (ERA5) query

In order to ensure the reproducibility of the study, an example of the HTTP request used to download daily
ERAS reanalysis data via the Open-Meteo API is presented below, corresponding to the city of Tarapoto
(Peru) and the period from January 1, 2017 to September 26, 2025.

The query example is provided for illustrative purposes only, with the aim of documenting access to the
data source used. The complete computational implementation, including variable preprocessing, model
training, and experimental evaluation, was carried out in Python withinareproducible Google Colab-based
environment and is available upon reasonable request to the corresponding author.

https://archive-api.open-meteo.com/v1/era5?latitude=-6.5&longitude=-76.3&start_date=2017-01-
01&end_date=2025-09-
26&daily=shortwave_radiation_sum,cloudcover_mean,temperature_2m_mean,relative_humidity_2m_mea
n,windspeed_10m_max&timezone=UTC
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Note: For execution in Python, this query was implemented using the requests library, as shown in the

reproducible code used in this study.

import requests

url = "https://archive-api.open-meteo.com/v1/era5"

params = {

"latitude": -6.5,

"longitude": -76.3,

"start_date": "2017-01-01",

"end_date": "2025-09-26",

"daily": [
"shortwave_radiation_sum",
"cloudcover_mean",
"temperature_2m_mean",
"relative_humidity_2m_mean",
"windspeed_10m_max"

1

"timezone": "UTC"

}

r = requests.get(url, params=params)

data =r.json()
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