
 Rev. Cient. Sist. Inform. 6(1), e1385, doi: 10.51252/rcsi.v6i1.1385   

  

Artículo Original 
Original Article 

Ene-Jun, 2026 https://revistas.unsm.edu.pe/index.php/rcsi 
e-ISSN: 2709-992X 

 

© Los autores. Este es un artículo de acceso abierto distribuido bajo los términos de la Licencia Creative Commons Atribución, que permite el uso, distribución y 
reproducción sin restricciones en cualquier medio, siempre que se cite correctamente la obra original. 

 

Aplicación de aprendizaje profundo en la detección 
fitosanitaria del cacao usando visión por computadora 

Application of deep learning in the phytosanitary detection of cocoa using 
computer vision 

 Navarro-Cabrera, Jorge Raul1* 

 Beraún-Barrantes, José Guillermo1 

 Cárdenas-García, Ángel2 

 Lozano-Carranza, Carlos Mauricio3 

1Universidad de Huánuco, Huánuco, Perú 
2Universidad Nacional de San Martín, Tarapoto, Perú 
3TUSAN Ingenieros Consultores, Tarapoto, Perú 

Recibido: 16 Set. 2025 | Aceptado: 30 Dic. 2025 | Publicado: 20 Ene. 2026 

Autor de correspondencia*: jorge.navarro@udh.edu.pe 

Cómo citar este artículo: Navarro-Cabrera, J. R., Beraún-Barrantes, J. G., Cárdenas-García, A. & Lozano-Carranza, C. M. (2026). 
Aplicación de aprendizaje profundo en la detección fitosanitaria del cacao usando visión por computadora. Revista Científica de Sistemas 
e Informática, 6(1), e1385. https://doi.org/10.51252/rcsi.v6i1.1385  

RESUMEN 

Este estudio analizó la aplicación del aprendizaje profundo en la detección fitosanitaria automatizada del cacao mediante 

visión por computadora, comparando el desempeño de tres arquitecturas: ResNet50, EfficientNet-B0 y Vision Transformer 

(ViT-B/16). Se implementó un pipeline reproducible que integró preprocesamiento de imágenes, validación cruzada 

estratificada de cinco pliegues y análisis estadístico inferencial mediante ANOVA de medidas repetidas. El conjunto de datos 

estuvo conformado por 4390 imágenes RGB de frutos de cacao, distribuidas en tres clases desbalanceadas: Healthy, Black 

Pod Rot y Pod Borer. Todos los modelos fueron ajustados mediante fine-tuning completo y entrenados con el optimizador 

AdamW, parada temprana y programación dinámica de la tasa de aprendizaje. Los resultados mostraron valores medios de 

F1 macro superiores a 0.96 en las tres arquitecturas, sin diferencias estadísticamente significativas entre modelos (F = 0,278, 

p = 0,7645). Las curvas de entrenamiento evidenciaron convergencia estable y baja variabilidad inter-fold, sin indicios de 

sobreajuste. Los hallazgos indican que el rendimiento depende principalmente de la calidad del pipeline experimental y del 
manejo del desbalance de clases, más que del tipo de arquitectura empleada. 

Palabras clave: aprendizaje profundo; diagnóstico automatizado; modelos de clasificación; sanidad vegetal; visión artificial 

ABSTRACT 

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision, 

comparing the performance of three architectures: ResNet50, EfficientNet-B0, and Vision Transformer (ViT-B/16). A 

reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential 

statistical analysis using repeated-measures ANOVA. The dataset consisted of 4390 RGB images of cacao fruits distributed 

across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using 

the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1-macro values 
above 0.96 across all architectures, with no statistically significant differences among models (F = 0.278, p = 0.7645). Training 

curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate 

that system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather 

than on the specific architecture employed. 
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1. INTRODUCCIÓN  

El cacao (Theobroma cacao L.) es uno de los cultivos agrícolas más importantes a nivel mundial, con un 

papel clave en la economía de los países tropicales y en la generación de ingresos para millones de 

pequeños productores (Charry et al., 2025; Vinci et al., 2024). Su grano fermentado y seco constituye la 

materia prima esencial para la industria del chocolate y diversos productos de confitería (Paparella et al., 

2025; Quintero et al., 2025). Sin embargo, la producción de cacao enfrenta serias amenazas derivadas de 

enfermedades fúngicas y plagas que reducen drásticamente el rendimiento y comprometen la calidad del 

grano, afectando la competitividad global de la cadena de valor (Cilas & Bastide, 2020; Delgado-Ospina et 

al., 2021; Zahlul Ikhsan et al., 2024). Entre las patologías más relevantes se encuentran la Black Pod Rot, 

causada por Phytophthora spp., y el Pod Borer, ambas responsables de pérdidas económicas significativas 

en zonas de producción tropical (Magfirah et al., 2025; Puig et al., 2022; Schmidt et al., 2023). 

Tradicionalmente, la detección de estas afecciones se ha basado en inspecciones visuales realizadas por 

agricultores o especialistas, un procedimiento subjetivo que depende de la experiencia individual y de la 

interpretación morfológica de los síntomas (Miyittah et al., 2022; Polania Bello, 2023). Este enfoque, 

además de ser lento y costoso, presenta una alta variabilidad en la precisión del diagnóstico, lo que retrasa 

la aplicación de medidas de control efectivas y aumenta la propagación de la enfermedad. En consecuencia, 

la industria agrícola demanda métodos más confiables, rápidos y reproducibles para la identificación 

temprana de plagas y enfermedades, que permitan optimizar los procesos de manejo y mejorar la 

productividad de los cultivos (Raj & Prahadeeswaran, 2025; Wu et al., 2025). 

En este contexto, los avances en visión por computadora y aprendizaje automático (Machine Learning, ML) 

han abierto nuevas oportunidades para la automatización de tareas de diagnóstico en la agricultura de 

precisión (Taha et al., 2025; Waqas et al., 2025). Estas tecnologías permiten analizar grandes volúmenes 

de datos visuales mediante algoritmos capaces de reconocer patrones complejos en imágenes de hojas, 

frutos o tallos (Injante et al., 2025; Lebrini & Ayerdi Gotor, 2024). Los sistemas de visión artificial (SVA), al 

combinar hardware óptico y software de procesamiento digital de imágenes, se han consolidado como 

herramientas no destructivas, rápidas y rentables para la caracterización y clasificación de productos 

agrícolas, logrando niveles de exactitud comparables e incluso superiores a los obtenidos por expertos 

humanos (Anjali et al., 2024; Song et al., 2025). 

El aprendizaje profundo (Deep Learning, DL), como evolución del ML, ha revolucionado el campo de la 

visión por computadora al introducir modelos capaces de aprender representaciones jerárquicas 

directamente a partir de los datos (Ray et al., 2025; Villalobos-Culqui et al., 2025). Estos enfoques permiten 

extraer de manera automática características relevantes de las imágenes, eliminando la necesidad de una 

ingeniería manual de atributos y aumentando la capacidad de generalización en tareas complejas (Mall et 

al., 2023). Gracias a su arquitectura multinivel, el DL ha demostrado un desempeño sobresaliente en la 

detección, segmentación y clasificación de patrones visuales, consolidándose como el paradigma 

dominante en aplicaciones de diagnóstico agrícola, control de calidad y monitoreo automatizado de 

cultivos (Deepa et al., 2025; Shafay et al., 2025). 

No obstante, la literatura actual revela limitaciones importantes. La mayoría de los estudios se centra en 

una sola arquitectura o evalúa modelos sin aplicar métodos estadísticos que permitan comparar su 

rendimiento con significancia inferencial. Esta falta de análisis comparativo riguroso impide identificar con 

claridad qué arquitecturas son más estables, precisas y eficientes en contextos agrícolas con recursos 

computacionales limitados. Además, la mayoría de los experimentos carece de esquemas de validación 

cruzada o protocolos reproducibles, dificultando la replicabilidad de los resultados y su adopción práctica. 

Frente a esta brecha, surge la necesidad de realizar evaluaciones sistemáticas que comparen enfoques 

contemporáneos de aprendizaje profundo bajo un marco experimental controlado. Estos modelos 

presentan distintos compromisos entre precisión, complejidad y eficiencia computacional, por lo que 
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resulta fundamental analizar su rendimiento en tareas de clasificación automática de plagas y 

enfermedades agrícolas. Evaluar su comportamiento comparativo permite establecer lineamientos 

técnicos para su implementación en sistemas de monitoreo inteligente y diagnóstico fitosanitario 

automatizado, promoviendo soluciones que combinen alto desempeño, estabilidad y viabilidad operativa 

en entornos reales de producción (Bono et al., 2026). 

En este estudio se propone un enfoque de visión por computadora impulsado por aprendizaje profundo 

(Deep Learning–Driven Computer Vision) orientado a la detección temprana y automática de plagas y 

enfermedades en frutos de cacao. Se implementó un proceso metodológico reproducible que integra 

estrategias de preprocesamiento, validación cruzada estratificada y análisis estadístico para comparar el 

rendimiento de diferentes modelos de aprendizaje profundo. El objetivo es identificar patrones visuales 

asociados a distintas condiciones fitosanitarias y evaluar la estabilidad y precisión de los modelos en 

escenarios de clasificación automatizada. Este trabajo busca aportar evidencia técnica y práctica para el 

desarrollo de sistemas inteligentes de diagnóstico agrícola, promoviendo la sostenibilidad y la eficiencia en 

la producción mundial de cacao. 

2. MATERIALES Y MÉTODOS 

El desarrollo experimental se estructuró en un pipeline reproducible de visión por computadora diseñado 

para la clasificación automática de enfermedades en frutos de cacao. El proceso comprendió las siguientes 

fases: (1) exploración de datos (EDA), (2) preprocesamiento, (3) entrenamiento con validación cruzada 

estratificada, (4) evaluación mediante métricas de clasificación y (5) análisis estadístico inferencial para 

contrastar el desempeño de los modelos. En la figura 1 se muestra el esquema metodológico garantiza la 

trazabilidad de los resultados y la comparabilidad entre configuraciones, permitiendo replicar el estudio 

en distintos contextos de producción o con nuevos conjuntos de datos. 

 
Figura 1. Esquema metodológico propuesto 

Conjunto de datos y preparación inicial 

Se utilizó el conjunto de imágenes llamado “Cacao Diseases”, obtenido a través de Kaggle (carpetas por 

clase), compuesto por 4390 imágenes RGB de frutos de cacao etiquetadas en tres categorías: Black Pod Rot 

(943), Pod Borer (103) y Healthy (3344). Las imágenes se organizaron bajo el esquema ImageFolder (una 

carpeta por clase) para su consumo directo por PyTorch. Antes de entrenar, se ejecutó una EDA básica: 

primero un conteo por clase para identificar desbalances, luego el muestreo de tamaños de imagen para 

estimar la variabilidad de resoluciones y, por último, un mosaico visual de ejemplos por clase. Cualquier 

imagen corrupta o ilegible se descartó. 
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Diseño experimental y particionamiento  

Para obtener estimaciones robustas y habilitar comparación estadística entre arquitecturas, se aplicó 

validación cruzada estratificada de 5 folds (mismo reparto por clase en cada fold). En cada fold se entrenó 

y validó cada uno de los tres modelos sobre las mismas particiones, lo que posteriormente permitió tratar 

al fold como “sujeto” en el análisis de medidas repetidas. Se fijó una semilla global (42) para asegurar 

reproducibilidad. 

Preprocesamiento y aumentos 

Con el fin de preservar señales cromáticas relevantes para síntomas tales como manchas, micelio, o 

decoloraciones, se usaron parámetros de aumentos moderados y normalización estándar de ImageNet: 

Entrenamiento:  
train_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.RandomResizedCrop(img_size, scale=(0.8, 1.0)), 

      transforms.RandomHorizontalFlip(), 

      transforms.RandomRotation(10), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

]) 

Validación:  
eval_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.CenterCrop(img_size), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

    ]) 

El tamaño de entrada se fijó en 224×224px para permitir la compatibilidad con el estándar de ImageNet y 

mejorar la eficiencia de cómputo. Las transformaciones en los aumentadores fueron conservadores, con el 

propósito de no distorsionar rasgos finos en las lesiones. 

Modelos evaluados 

Se evaluaron tres arquitecturas de aprendizaje profundo ampliamente utilizadas en estudios recientes de 

clasificación de imágenes agro-fitopatológicas: ResNet50 (He et al., 2015), EfficientNet-B0 (Tan & Le, 2020) 

y Vision Transformer (ViT-B/16) (Wang et al., 2025). Todas las redes fueron preentrenadas en el conjunto 

de datos ImageNet-1K, con el objetivo de aprovechar las representaciones visuales generales aprendidas a 

partir de millones de imágenes naturales. Posteriormente, se reconfiguraron las capas de salida para 

adaptarlas al dominio específico del problema. En el caso de ResNet50, la capa final fue reemplazada por 

una capa totalmente conectada con tres neuronas correspondientes a las clases de interés. En EfficientNet-

B0, se sustituyó la última capa del clasificador por una salida de tres clases, mientras que en ViT-B/16 se 

reemplazó el componente de clasificación original por una capa lineal con la misma dimensionalidad de 

salida. 

En los tres modelos se realizó un ajuste completo de los parámetros (fine-tuning total), en lugar de congelar 

las capas convolucionales o de atención preentrenadas. Esta decisión metodológica responde a la diferencia 

sustancial entre el dominio fuente, representado por ImageNet, basado en objetos naturales y escenas 

generales, y el dominio objetivo del presente estudio, centrado en imágenes de frutos de cacao afectados 

por lesiones y plagas. El ajuste integral de pesos permite que las arquitecturas aprendan representaciones 

discriminativas más específicas del contexto fitopatológico, optimizando la sensibilidad del modelo ante 

patrones visuales sutiles y texturas asociadas a los diferentes estados de salud del fruto. 
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Configuración de entrenamiento 

El entrenamiento de los modelos se implementó utilizando el framework PyTorch, aplicando un conjunto 

uniforme de hiperparámetros con el propósito de garantizar la comparabilidad entre arquitecturas. Se 

empleó el optimizador AdamW (Kingma & Ba, 2014) con una tasa de aprendizaje inicial de 1×10⁻⁴ y un 

parámetro de decaimiento de peso (weight decay) de 1×10⁻⁴, configuraciones que equilibran la estabilidad 

del gradiente y la regularización del modelo durante el aprendizaje. La función de pérdida seleccionada fue 

la Cross-Entropy Loss, adecuada para problemas de clasificación multiclase. El tamaño de lote se estableció 

en 32 imágenes por iteración, y el proceso de entrenamiento se ejecutó durante un máximo de 10 épocas 

por fold, dentro del esquema de validación cruzada estratificada. Para ajustar dinámicamente la tasa de 

aprendizaje, se incorporó un programador ReduceLROnPlateau, el cual reduce el valor de la tasa de 

aprendizaje en un 50 % cuando la pérdida de validación no muestra mejora significativa. Asimismo, se 

implementó un mecanismo de parada temprana con una paciencia de tres épocas, seleccionando como 

punto óptimo el checkpoint correspondiente al mayor valor de F1 macro alcanzado en la validación. Este 

conjunto de estrategias permitió controlar el sobreajuste, estabilizar la convergencia y optimizar el uso de 

recursos computacionales, lo que resulta adecuado tanto para entornos con limitaciones de hardware como 

para escenarios de inferencia en dispositivos de borde. 

Protocolo de evaluación por fold 

Al final de cada época se evaluó en el conjunto de validación del fold y, una vez activado el criterio de parada, 

se cargó el mejor estado del modelo para computar las métricas finales del fold: Exactitud (Accuracy), F1 

macro, Precisión macro y Recall macro. Así como un reporte de clasificación por clase (precision/recall/F1) 

y la matriz de confusión. 

Las matrices de confusión por fold se almacenaron y posteriormente se agregaron por modelo de dos 

maneras: Por suma de cuentas absolutas y mediante una versión normalizada por fila (recall por clase), 

con el fin de analizar patrones de confusión sistemáticos entre clases sin que un único fold domine la 

interpretación. 

Comparación estadística entre modelos 

Para contrastar el rendimiento medio de las tres arquitecturas se aplicó un diseño estadístico de medidas 

repetidas considerando los cinco folds generados en la validación cruzada. En primer lugar, se construyó 

una tabla en formato largo que incluyó como factores el fold (tratado como sujeto), el modelo (considerado 

como factor intra-sujeto con tres niveles) y la métrica de respuesta F1 macro. Posteriormente, se realizó 

un análisis de varianza de medidas repetidas (ANOVA-RM) utilizando el modelo como efecto intra-sujeto y 

el fold como unidad de observación, estableciendo un nivel de significancia de α = 0.05. En los casos en que 

se detectó significancia estadística, se efectuó un análisis post-hoc mediante pruebas t pareadas entre cada 

par de modelos, aplicando la corrección de Bonferroni para controlar el error tipo I acumulado. Este 

enfoque permitió evaluar de manera robusta las diferencias atribuibles a la arquitectura, controlando la 

variabilidad introducida por las particiones de validación y evitando conclusiones dependientes de una 

única división entrenamiento-validación. 

3. RESULTADOS Y DISCUSIÓN  

3.1. Exploración de datos (EDA) 

Tras la exploración inicial del conjunto de datos se contabilizaron 4 390 imágenes distribuidas en tres 

clases con un desbalance considerable: la categoría Healthy concentró 3 344 imágenes (76.2 %), mientras 

que Black Pod Rot presentó 943 (21.5 %) y Pod Borer únicamente 103 (2.35 %), lo que representa una 

razón aproximada de 32.5 veces entre la clase mayoritaria y la minoritaria. El análisis geométrico realizado 

sobre una muestra de 300 imágenes indicó que todas las capturas presentan una relación de aspecto 



Navarro-Cabrera et al.  

6                                                                              Rev. Cient. Sist. Inform. 6(1): e1385; (Ene-Jun, 2025). e-ISSN: 2709-992X 

cercana a 1.0, con resoluciones comprendidas entre 1080×1080 y 2160×2160 píxeles, lo que confirma la 

uniformidad del formato de adquisición. Estas observaciones justificaron la utilización de una validación 

cruzada estratificada para conservar las proporciones por clase en cada fold, así como la priorización de la 

métrica F1 macro en la selección de checkpoints con el fin de mitigar el sesgo inducido por el desbalance 

de clases. Asimismo, se optó por aplicar aumentos de datos moderados durante el entrenamiento, buscando 

mejorar la capacidad de generalización del modelo sin comprometer la integridad de las señales visuales 

asociadas a las lesiones (Figura 2). 

 
Figura 2. Gráfico de distribución por clases 

3.2. Desempeño global de los modelos 

El análisis del desempeño global de los modelos evidenció un rendimiento altamente competitivo entre las 

tres arquitecturas evaluadas. El modelo Vision Transformer (ViT-B/16) alcanzó la mayor media de F1 

macro, con un valor de 0.9697 y una desviación estándar de 0.0114, junto con una exactitud promedio de 

0.9788. En segundo lugar, se ubicó ResNet50, con una F1 macro media de 0.9683, seguida de EfficientNet-

B0, que obtuvo 0.9666. Las diferencias entre los tres modelos resultaron mínimas, con una separación 

promedio de aproximadamente 0.3 puntos porcentuales entre el mejor y el de menor desempeño en la 

métrica F1 macro. Este comportamiento estrechamente agrupado refleja la robustez de las arquitecturas y 

confirma la efectividad del esquema de preprocesamiento y validación adoptado en el estudio (Tabla 1). 

Tabla 1. Resumen de métricas de evaluación por modelo 

Modelo 
Exac. 

Media 
Desv. 
Exac. 

F1 
Media 

Desv. F1 
Prec. 

Media 
Desv. 
Prec. 

Recall 
Media 

Desv. 
Recall 

EfficientNet-B0 0.9756 0.0045 0.9666 0.0128 0.9690 0.0102 0.9651 0.0205 

ResNet50 0.9811 0.0036 0.9683 0.0155 0.9803 0.0118 0.9575 0.0233 

ViT-B/16 0.9788 0.0064 0.9697 0.0114 0.9800 0.0087 0.9604 0.0171 

 

3.3. Entrenamiento, validación cruzada estratificada y consistencia inter-fold 

La evolución del F1 macro durante el proceso de entrenamiento y validación mostró un patrón de 

convergencia estable en los tres modelos, sin indicios de sobreajuste y con fluctuaciones mínimas entre 

folds. En las Figuras 3, 4 y 5 se observa la consistencia de las curvas de validación correspondientes a 

EfficientNet-B0, ResNet50 y ViT-B/16, respectivamente, lo que confirma la estabilidad del proceso de 

optimización y la reproducibilidad de los resultados obtenidos. 
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Figura 3. Evolución del F1 Macro (validación) por fold en modelo EfficientNetB0 

 

Figura 4. Evolución del F1 Macro (validación) por fold en modelo ResNet50 

 
Figura 5. Evolución del F1 Macro (validación) por fold en modelo ViT-B/16 

El análisis de consistencia entre folds mostró una variabilidad baja en todas las configuraciones 

experimentales, con desviaciones estándar de la métrica F1 macro cercanas a una centésima, lo que refleja 

una alta estabilidad del proceso de entrenamiento y validación. Este comportamiento sugiere que las 

decisiones adoptadas durante el preprocesamiento de las imágenes y el uso de la validación cruzada 

estratificada aportaron robustez al procedimiento, evitando la influencia de un fold dominante que pudiera 

sesgar los promedios globales. Los resultados detallados de cada arquitectura en los cinco folds se 

presentan en la Tabla 2, donde se observa la consistencia de las métricas de exactitud, precisión, recall y 

F1, evidenciando un rendimiento equilibrado entre modelos y particiones. 

Asimismo, las curvas de entrenamiento y validación mostraron una convergencia rápida, alcanzando 

estabilidad en menos de diez épocas. El uso del programador de tasa de aprendizaje (scheduler) favoreció 
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la estabilización de la pérdida en las etapas finales del entrenamiento, mientras que el criterio de parada 

temprana contribuyó a prevenir el sobreajuste. En conjunto, estos resultados confirman la 

reproducibilidad del pipeline propuesto y la consistencia inter-fold de los modelos, lo que respalda la 

validez de las conclusiones derivadas del análisis comparativo. 

Tabla 2. Métricas de validación cruzada estratificada 

Fold Modelo Exactitud F1 Precisión Recall 
1 ResNet50 0.9863 0.9862 0.9914 0.9814 
1 EfficientNet-B0 0.9795 0.9799 0.9765 0.9834 
1 ViT-B/16 0.9806 0.9807 0.9825 0.9789 
2 ResNet50 0.9795 0.9539 0.9820 0.9299 
2 EfficientNet-B0 0.9692 0.9614 0.9557 0.9676 
2 ViT-B/16 0.9681 0.9610 0.9665 0.9560 
3 ResNet50 0.9772 0.9538 0.9601 0.9479 
3 EfficientNet-B0 0.9727 0.9488 0.9709 0.9305 
3 ViT-B/16 0.9784 0.9543 0.9781 0.9343 
4 ResNet50 0.9829 0.9829 0.9835 0.9823 
4 EfficientNet-B0 0.9784 0.9645 0.9616 0.9675 
4 ViT-B/16 0.9829 0.9754 0.9899 0.9619 
5 ResNet50 0.9795 0.9645 0.9844 0.9463 
5 EfficientNet-B0 0.9784 0.9783 0.9801 0.9765 

3.4. Matrices de confusión y comportamiento por clase 

Las matrices de confusión agregadas por modelo, obtenidas a partir de la suma de los cinco folds, junto con 

sus versiones normalizadas por fila, evidenciaron un comportamiento equilibrado entre clases, sin indicios 

de patrones de confusión sistemáticos dominantes. La normalización por fila permitió analizar de manera 

detallada el recall por clase, mostrando ligeras oscilaciones entre arquitecturas que resultan coherentes 

con el rango estrecho de valores de F1 macro previamente reportado. Estas variaciones no modifican la 

conclusión general del estudio: los tres modelos presentan una capacidad consistente para discriminar 

correctamente entre las categorías Black Pod Rot, Pod Borer y Healthy, manteniendo un desempeño 

homogéneo en el conjunto de datos evaluado (Figura 6). 

 
Figura 6. Matrices de confusión por modelo 

3.5. Análisis estadístico inferencial (ANOVA y post-hoc) 
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La comparación estadística del rendimiento medio entre las tres arquitecturas se realizó mediante un 

análisis de varianza de medidas repetidas (ANOVA-RM) aplicado sobre la métrica F1 macro, considerando 

el fold como sujeto y el modelo como factor intra-sujeto. Los resultados no mostraron diferencias 

estadísticamente significativas entre arquitecturas (F = 0.278, p = 0.7645), lo que sugiere un 

comportamiento homogéneo en el rendimiento promedio de los modelos. Este hallazgo se corroboró 

mediante pruebas post-hoc pareadas con corrección de Bonferroni, en las que ninguno de los contrastes 

por pares alcanzó significancia estadística. En particular, la diferencia media de F1 macro entre ViT-B/16 

y EfficientNet-B0 fue de aproximadamente +0.0031 con un intervalo de confianza del 95 % y p ≈ 0.25, 

mientras que la diferencia entre ViT-B/16 y ResNet50 fue de +0.0014, también no significativa. En 

conjunto, estos resultados indican que, aunque ViT-B/16 presentó la media más alta, las discrepancias 

observadas fueron pequeñas y estadísticamente atribuibles a la variabilidad del muestreo, confirmando la 

robustez de las tres arquitecturas evaluadas (Tabla 3). 

Tabla 3. Pruebas post-hoc por par de modelos 

Modelos t p_raw 
ResNet50 vs EfficientNet B0 0.297661326 0.780781239 

ResNet50 vs ViT-B/16 -0.370845959 0.72955701 
EfficientNet B0 vs ViT-B/16 -1.347132941 0.249193532 

Implicaciones prácticas 

Los resultados obtenidos demuestran que las tres arquitecturas evaluadas ofrecen un desempeño 

competitivo y estable para la clasificación automática de enfermedades del cacao, con valores de F1 macro 

cercanos y sin diferencias estadísticamente significativas. Este hallazgo confirma que la eficacia del modelo 

no depende estrictamente de la arquitectura empleada, sino de la coherencia del pipeline de 

preprocesamiento, la validación estratificada y el control de sobreajuste. En consecuencia, la elección del 

modelo de referencia puede guiarse por criterios operativos y contextuales de implementación: Vision 

Transformer (ViT-B/16), por su ligera ventaja media y capacidad para modelar relaciones espaciales 

globales; ResNet50, por su madurez, amplio soporte en bibliotecas de producción y comportamiento muy 

cercano al primero; y EfficientNet-B0, cuando se prioriza la eficiencia computacional y la reducción de la 

huella de despliegue. 

Estos resultados respaldan lo señalado por Ray et al. (2025) y Deepa et al. (2025), quienes destacan que 

los modelos de aprendizaje profundo aplicados al diagnóstico agrícola ofrecen altos niveles de precisión 

incluso con arquitecturas ligeras, siempre que se acompañen de estrategias de entrenamiento consistentes 

y datos adecuadamente preprocesados. Asimismo, confirman la tendencia observada por Lebrini & Ayerdi 

Gotor (2024) y Shafay et al. (2025), respecto a que la eficacia de la visión por computadora en el ámbito 

fitosanitario depende más del rigor metodológico que de la complejidad del modelo en sí. 

Desde el punto de vista aplicado, los resultados contribuyen a llenar un vacío metodológico identificado en 

la literatura reciente: la falta de comparaciones sistemáticas entre arquitecturas contemporáneas bajo 

marcos estadísticos controlados. En este sentido, el estudio aporta evidencia reproducible que orienta la 

selección de modelos según el equilibrio entre precisión, estabilidad y viabilidad de implementación en 

entornos agrícolas de recursos limitados, una línea de investigación destacada por Bono et al. (2026) en el 

contexto de la agricultura inteligente. Finalmente, las mejoras futuras deberían enfocarse no tanto en el 

reemplazo de arquitecturas, sino en optimizar estrategias complementarias como el rebalanceo de clases, 

los aumentos de datos específicos por tipo de lesión y el ajuste adaptativo de umbrales de decisión, 

siguiendo las recomendaciones de Song et al. (2025) sobre la necesidad de integrar pipelines robustos que 

maximicen la generalización en aplicaciones de visión por computadora agrícola. 
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CONCLUSIONES 

El estudio demostró que las arquitecturas de aprendizaje profundo evaluadas presentan un rendimiento 

estadísticamente equivalente en la detección automática de plagas y enfermedades del cacao, alcanzando 

valores de F1 macro superiores al 0.96 y desviaciones estándar reducidas entre folds. Estos resultados 

evidencian la robustez del pipeline de visión por computadora implementado y la eficacia de las estrategias 

de preprocesamiento, validación y regularización empleadas. La ausencia de diferencias significativas 

entre modelos indica que la selección del enfoque puede guiarse por criterios operativos, considerando el 

balance entre precisión, eficiencia computacional y escalabilidad del despliegue. Asimismo, se confirma que 

la estabilidad y generalización del sistema dependen principalmente de la calidad del entrenamiento y del 

manejo del desbalance de clases, más que del tipo de arquitectura utilizada. En conjunto, los hallazgos 

contribuyen al desarrollo de sistemas inteligentes reproducibles y escalables para el monitoreo 

fitosanitario, fortaleciendo la integración de la inteligencia artificial en la agricultura de precisión y su 

aplicación en contextos productivos reales.  
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