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RESUMEN

Este estudio analizé la aplicacién del aprendizaje profundo en la deteccidn fitosanitaria automatizada del cacao mediante
visién por computadora, comparando el desempefio de tres arquitecturas: ResNet50, EfficientNet-B0 y Vision Transformer
(ViT-B/16). Se implement6é un pipeline reproducible que integré preprocesamiento de imagenes, validacién cruzada
estratificada de cinco pliegues y analisis estadistico inferencial mediante ANOVA de medidas repetidas. El conjunto de datos
estuvo conformado por 4390 imagenes RGB de frutos de cacao, distribuidas en tres clases desbalanceadas: Healthy, Black
Pod Rot y Pod Borer. Todos los modelos fueron ajustados mediante fine-tuning completo y entrenados con el optimizador
AdamW, parada temprana y programacién dindmica de la tasa de aprendizaje. Los resultados mostraron valores medios de
F1 macro superiores a 0.96 en las tres arquitecturas, sin diferencias estadisticamente significativas entre modelos (F = 0,278,
p = 0,7645). Las curvas de entrenamiento evidenciaron convergencia estable y baja variabilidad inter-fold, sin indicios de
sobreajuste. Los hallazgos indican que el rendimiento depende principalmente de la calidad del pipeline experimental y del
manejo del desbalance de clases, mas que del tipo de arquitectura empleada.

Palabras clave: aprendizaje profundo; diagnéstico automatizado; modelos de clasificacién; sanidad vegetal; vision artificial

ABSTRACT

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision,
comparing the performance of three architectures: ResNet50, EfficientNet-B0O, and Vision Transformer (ViT-B/16). A
reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential
statistical analysis using repeated-measures ANOVA. The dataset consisted of 4390 RGB images of cacao fruits distributed
across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using
the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1-macro values
above 0.96 across all architectures, with no statistically significant differences among models (F = 0.278, p = 0.7645). Training
curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate
that system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather
than on the specific architecture employed.
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1. INTRODUCCION

El cacao (Theobroma cacao L.) es uno de los cultivos agricolas mas importantes a nivel mundial, con un
papel clave en la economia de los paises tropicales y en la generacién de ingresos para millones de
pequefios productores (Charry et al., 2025; Vinci et al., 2024). Su grano fermentado y seco constituye la
materia prima esencial para la industria del chocolate y diversos productos de confiteria (Paparella et al.,
2025; Quintero et al., 2025). Sin embargo, la produccién de cacao enfrenta serias amenazas derivadas de
enfermedades flngicas y plagas que reducen drasticamente el rendimiento y comprometen la calidad del
grano, afectando la competitividad global de la cadena de valor (Cilas & Bastide, 2020; Delgado-Ospina et
al,, 2021; Zahlul Ikhsan et al., 2024). Entre las patologias mas relevantes se encuentran la Black Pod Rot,
causada por Phytophthora spp., y el Pod Borer, ambas responsables de pérdidas econémicas significativas
en zonas de produccién tropical (Magfirah et al., 2025; Puig et al., 2022; Schmidt et al., 2023).

Tradicionalmente, la deteccidn de estas afecciones se ha basado en inspecciones visuales realizadas por
agricultores o especialistas, un procedimiento subjetivo que depende de la experiencia individual y de la
interpretacion morfologica de los sintomas (Miyittah et al., 2022; Polania Bello, 2023). Este enfoque,
ademas de ser lento y costoso, presenta una alta variabilidad en la precisién del diagnéstico, lo que retrasa
la aplicacién de medidas de control efectivas y aumenta la propagacién de la enfermedad. En consecuencia,
la industria agricola demanda métodos mas confiables, rapidos y reproducibles para la identificacion
temprana de plagas y enfermedades, que permitan optimizar los procesos de manejo y mejorar la
productividad de los cultivos (Raj & Prahadeeswaran, 2025; Wu et al,, 2025).

En este contexto, los avances en vision por computadora y aprendizaje automatico (Machine Learning, ML)
han abierto nuevas oportunidades para la automatizacién de tareas de diagndstico en la agricultura de
precision (Taha et al.,, 2025; Wagqas et al.,, 2025). Estas tecnologias permiten analizar grandes volimenes
de datos visuales mediante algoritmos capaces de reconocer patrones complejos en imagenes de hojas,
frutos o tallos (Injante et al., 2025; Lebrini & Ayerdi Gotor, 2024). Los sistemas de vision artificial (SVA), al
combinar hardware éptico y software de procesamiento digital de imagenes, se han consolidado como
herramientas no destructivas, rapidas y rentables para la caracterizacion y clasificacion de productos
agricolas, logrando niveles de exactitud comparables e incluso superiores a los obtenidos por expertos
humanos (Anjali et al., 2024; Song et al.,, 2025).

El aprendizaje profundo (Deep Learning, DL), como evoluciéon del ML, ha revolucionado el campo de la
vision por computadora al introducir modelos capaces de aprender representaciones jerarquicas
directamente a partir de los datos (Ray et al,, 2025; Villalobos-Culqui et al., 2025). Estos enfoques permiten
extraer de manera automatica caracteristicas relevantes de las imagenes, eliminando la necesidad de una
ingenieria manual de atributos y aumentando la capacidad de generalizacién en tareas complejas (Mall et
al,, 2023). Gracias a su arquitectura multinivel, el DL ha demostrado un desempefio sobresaliente en la
deteccién, segmentacion y clasificacion de patrones visuales, consoliddndose como el paradigma
dominante en aplicaciones de diagnoéstico agricola, control de calidad y monitoreo automatizado de
cultivos (Deepa et al.,, 2025; Shafay et al.,, 2025).

No obstante, la literatura actual revela limitaciones importantes. La mayoria de los estudios se centra en
una sola arquitectura o evallia modelos sin aplicar métodos estadisticos que permitan comparar su
rendimiento con significancia inferencial. Esta falta de analisis comparativo riguroso impide identificar con
claridad qué arquitecturas son mas estables, precisas y eficientes en contextos agricolas con recursos
computacionales limitados. Ademas, la mayoria de los experimentos carece de esquemas de validacién
cruzada o protocolos reproducibles, dificultando la replicabilidad de los resultados y su adopcidn practica.

Frente a esta brecha, surge la necesidad de realizar evaluaciones sistematicas que comparen enfoques
contemporaneos de aprendizaje profundo bajo un marco experimental controlado. Estos modelos
presentan distintos compromisos entre precision, complejidad y eficiencia computacional, por lo que
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resulta fundamental analizar su rendimiento en tareas de clasificacion automatica de plagas y
enfermedades agricolas. Evaluar su comportamiento comparativo permite establecer lineamientos
técnicos para su implementacion en sistemas de monitoreo inteligente y diagnostico fitosanitario
automatizado, promoviendo soluciones que combinen alto desempefio, estabilidad y viabilidad operativa
en entornos reales de produccion (Bono et al., 2026).

En este estudio se propone un enfoque de visiéon por computadora impulsado por aprendizaje profundo
(Deep Learning-Driven Computer Vision) orientado a la deteccién temprana y automatica de plagas y
enfermedades en frutos de cacao. Se implementd un proceso metodolégico reproducible que integra
estrategias de preprocesamiento, validacion cruzada estratificada y andlisis estadistico para comparar el
rendimiento de diferentes modelos de aprendizaje profundo. El objetivo es identificar patrones visuales
asociados a distintas condiciones fitosanitarias y evaluar la estabilidad y precisiéon de los modelos en
escenarios de clasificacion automatizada. Este trabajo busca aportar evidencia técnica y practica para el
desarrollo de sistemas inteligentes de diagndstico agricola, promoviendo la sostenibilidad y la eficiencia en
la producciéon mundial de cacao.

2. MATERIALES Y METODOS

El desarrollo experimental se estructuré en un pipeline reproducible de visién por computadora disefiado
para la clasificacion automatica de enfermedades en frutos de cacao. El proceso comprendio las siguientes
fases: (1) exploracién de datos (EDA), (2) preprocesamiento, (3) entrenamiento con validacién cruzada
estratificada, (4) evaluacién mediante métricas de clasificacion y (5) andlisis estadistico inferencial para
contrastar el desempefio de los modelos. En la figura 1 se muestra el esquema metodolégico garantiza la
trazabilidad de los resultados y la comparabilidad entre configuraciones, permitiendo replicar el estudio
en distintos contextos de produccién o con nuevos conjuntos de datos.

Validaciéon cruzada
estratificada (5-fold)

e Kaggle: “Cacao Diseases”

e N = 4390 imagenes RGB e « Modelos: ResNet50, F—]
distribuidas en: -1 —T® EfficientNet-Bo, ViT-B/16 [=3
e Healthy: 3344 (76.2%) = Optimizador Adamw
e Black Pod Rot: 943 (21.5%) « Aumentacion moderada (Ir=1e-4, wd = 1e-4)
* Pod Borer: 103 (2.35%) = Normalizacién ImageNet = Early stopping, checkpoint:
= Input 224x224 mejor F1-macro I
+

Analisis Estadistico

e Accuracy, F1-macro, Rp-

ANOVA repetida (a = 0.05) macro, Re-macro =

Post-hoc t + Bonferroni — L |mE—= pvo;
<+ ¢ Reporte por clase, matriz | Of|e—

Sin diferencias significativas: de confusién = gf

F=0.278, p=0.7645 * Agregacion de matrices de — y @

F1-macro = 96% (para 3 modelos) confusién

Confusién equilibrada

Figura 1. Esquema metodolégico propuesto

Conjunto de datos y preparacion inicial

Se utiliz6 el conjunto de imagenes llamado “Cacao Diseases”, obtenido a través de Kaggle (carpetas por
clase), compuesto por 4390 imagenes RGB de frutos de cacao etiquetadas en tres categorias: Black Pod Rot
(943), Pod Borer (103) y Healthy (3344). Las imagenes se organizaron bajo el esquema ImageFolder (una
carpeta por clase) para su consumo directo por PyTorch. Antes de entrenar, se ejecutd una EDA basica:
primero un conteo por clase para identificar desbalances, luego el muestreo de tamafios de imagen para
estimar la variabilidad de resoluciones y, por tltimo, un mosaico visual de ejemplos por clase. Cualquier
imagen corrupta o ilegible se descarté.
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Disefio experimental y particionamiento

Para obtener estimaciones robustas y habilitar comparacién estadistica entre arquitecturas, se aplicé
validacién cruzada estratificada de 5 folds (mismo reparto por clase en cada fold). En cada fold se entrené
y validé cada uno de los tres modelos sobre las mismas particiones, lo que posteriormente permiti6 tratar
al fold como “sujeto” en el analisis de medidas repetidas. Se fij6 una semilla global (42) para asegurar
reproducibilidad.

Preprocesamiento y aumentos

Con el fin de preservar sefiales cromaticas relevantes para sintomas tales como manchas, micelio, o
decoloraciones, se usaron parametros de aumentos moderados y normalizacién estandar de ImageNet:

Entrenamiento:

train tf = transforms.Compose ([
transforms.Resize (int (img size*1.15)),
transforms.RandomResizedCrop (img size, scale=(0.8, .0)),
transforms.RandomHorizontalFlip (),

transforms.RandomRotation (10),
transforms.ToTensor (),
transforms.Normalize (IMAGENET MEAN, IMAGENET STD),

Validacién:

eval tf = transforms.Compose ([
transforms.Resize (int (img size*1.15)),
transforms.CenterCrop (img size),

transforms.ToTensor (),
transforms.Normalize (IMAGENET MEAN, IMAGENET STD),

1)

El tamafio de entrada se fijo en 224x224px para permitir la compatibilidad con el estandar de ImageNet y
mejorar la eficiencia de cémputo. Las transformaciones en los aumentadores fueron conservadores, con el
proposito de no distorsionar rasgos finos en las lesiones.

Modelos evaluados

Se evaluaron tres arquitecturas de aprendizaje profundo ampliamente utilizadas en estudios recientes de
clasificacion de imagenes agro-fitopatologicas: ResNet50 (He et al., 2015), EfficientNet-BO (Tan & Le, 2020)
y Vision Transformer (ViT-B/16) (Wang et al,, 2025). Todas las redes fueron preentrenadas en el conjunto
de datos ImageNet-1K, con el objetivo de aprovechar las representaciones visuales generales aprendidas a
partir de millones de imagenes naturales. Posteriormente, se reconfiguraron las capas de salida para
adaptarlas al dominio especifico del problema. En el caso de ResNet50, la capa final fue reemplazada por
una capa totalmente conectada con tres neuronas correspondientes a las clases de interés. En EfficientNet-
B0, se sustituyd la dltima capa del clasificador por una salida de tres clases, mientras que en ViT-B/16 se
reemplazo el componente de clasificacion original por una capa lineal con la misma dimensionalidad de
salida.

En los tres modelos se realiz6 un ajuste completo de los parametros (fine-tuning total), en lugar de congelar
las capas convolucionales o de atencién preentrenadas. Esta decision metodologica responde a la diferencia
sustancial entre el dominio fuente, representado por ImageNet, basado en objetos naturales y escenas
generales, y el dominio objetivo del presente estudio, centrado en imagenes de frutos de cacao afectados
por lesiones y plagas. El ajuste integral de pesos permite que las arquitecturas aprendan representaciones
discriminativas mas especificas del contexto fitopatoldgico, optimizando la sensibilidad del modelo ante
patrones visuales sutiles y texturas asociadas a los diferentes estados de salud del fruto.
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Configuraciéon de entrenamiento

El entrenamiento de los modelos se implementd utilizando el framework PyTorch, aplicando un conjunto
uniforme de hiperparametros con el propésito de garantizar la comparabilidad entre arquitecturas. Se
emple6 el optimizador AdamW (Kingma & Ba, 2014) con una tasa de aprendizaje inicial de 1x10™* y un
parametro de decaimiento de peso (weight decay) de 1x107*, configuraciones que equilibran la estabilidad
del gradiente y la regularizaciéon del modelo durante el aprendizaje. La funcidn de pérdida seleccionada fue
la Cross-Entropy Loss, adecuada para problemas de clasificaciéon multiclase. El tamafio de lote se establecid
en 32 imagenes por iteracion, y el proceso de entrenamiento se ejecuté durante un maximo de 10 épocas
por fold, dentro del esquema de validacion cruzada estratificada. Para ajustar dinamicamente la tasa de
aprendizaje, se incorpord un programador ReduceLROnPlateau, el cual reduce el valor de la tasa de
aprendizaje en un 50 % cuando la pérdida de validacién no muestra mejora significativa. Asimismo, se
implementé un mecanismo de parada temprana con una paciencia de tres épocas, seleccionando como
punto 6ptimo el checkpoint correspondiente al mayor valor de F1 macro alcanzado en la validaciéon. Este
conjunto de estrategias permitié controlar el sobreajuste, estabilizar la convergencia y optimizar el uso de
recursos computacionales, lo que resulta adecuado tanto para entornos con limitaciones de hardware como
para escenarios de inferencia en dispositivos de borde.

Protocolo de evaluacion por fold

Al final de cada época se evalud en el conjunto de validacién del fold y, una vez activado el criterio de parada,
se cargo el mejor estado del modelo para computar las métricas finales del fold: Exactitud (Accuracy), F1
macro, Precision macro y Recall macro. Asi como un reporte de clasificacion por clase (precision/recall/F1)
y la matriz de confusion.

Las matrices de confusion por fold se almacenaron y posteriormente se agregaron por modelo de dos
maneras: Por suma de cuentas absolutas y mediante una versién normalizada por fila (recall por clase),
con el fin de analizar patrones de confusién sistematicos entre clases sin que un Unico fold domine la
interpretacion.

Comparacion estadistica entre modelos

Para contrastar el rendimiento medio de las tres arquitecturas se aplicé un disefio estadistico de medidas
repetidas considerando los cinco folds generados en la validacién cruzada. En primer lugar, se construy6
una tabla en formato largo que incluy6 como factores el fold (tratado como sujeto), el modelo (considerado
como factor intra-sujeto con tres niveles) y la métrica de respuesta F1 macro. Posteriormente, se realiz6
un andlisis de varianza de medidas repetidas (ANOVA-RM) utilizando el modelo como efecto intra-sujeto y
el fold como unidad de observacion, estableciendo un nivel de significancia de a = 0.05. En los casos en que
se detectd significancia estadistica, se efectud un analisis post-hoc mediante pruebas t pareadas entre cada
par de modelos, aplicando la correccion de Bonferroni para controlar el error tipo I acumulado. Este
enfoque permitié evaluar de manera robusta las diferencias atribuibles a la arquitectura, controlando la
variabilidad introducida por las particiones de validacidn y evitando conclusiones dependientes de una
Unica divisién entrenamiento-validacion.

3. RESULTADOS Y DISCUSION

3.1. Exploracion de datos (EDA)

Tras la exploracion inicial del conjunto de datos se contabilizaron 4 390 imagenes distribuidas en tres
clases con un desbalance considerable: la categoria Healthy concentré 3 344 imagenes (76.2 %), mientras
que Black Pod Rot present6 943 (21.5 %) y Pod Borer unicamente 103 (2.35 %), lo que representa una
razon aproximada de 32.5 veces entre la clase mayoritaria y la minoritaria. El analisis geométrico realizado
sobre una muestra de 300 imagenes indicé que todas las capturas presentan una relaciéon de aspecto
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cercana a 1.0, con resoluciones comprendidas entre 1080x1080 y 2160x2160 pixeles, lo que confirma la
uniformidad del formato de adquisicion. Estas observaciones justificaron la utilizacién de una validacién
cruzada estratificada para conservar las proporciones por clase en cada fold, asi como la priorizacion de la
métrica F1 macro en la selecciéon de checkpoints con el fin de mitigar el sesgo inducido por el desbalance
de clases. Asimismo, se opté por aplicar aumentos de datos moderados durante el entrenamiento, buscando
mejorar la capacidad de generalizacion del modelo sin comprometer la integridad de las sefales visuales
asociadas a las lesiones (Figura 2).
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Figura 2. Grafico de distribucidn por clases

3.2. Desempeiio global de los modelos

El andlisis del desempeio global de los modelos evidenci6 un rendimiento altamente competitivo entre las
tres arquitecturas evaluadas. El modelo Vision Transformer (ViT-B/16) alcanzé la mayor media de F1
macro, con un valor de 0.9697 y una desviacion estandar de 0.0114, junto con una exactitud promedio de
0.9788. En segundo lugar, se ubicé ResNet50, con una F1 macro media de 0.9683, seguida de EfficientNet-
B0, que obtuvo 0.9666. Las diferencias entre los tres modelos resultaron minimas, con una separaciéon
promedio de aproximadamente 0.3 puntos porcentuales entre el mejor y el de menor desempeiio en la
métrica F1 macro. Este comportamiento estrechamente agrupado refleja la robustez de las arquitecturas y
confirma la efectividad del esquema de preprocesamiento y validaciéon adoptado en el estudio (Tabla 1).

Tabla 1. Resumen de métricas de evaluaciéon por modelo

Modelo Exac. Desv. F1 Desv. F1 Prec. Desv. Recall Desv.
Media Exac. Media Media Prec. Media Recall

EfficientNet-B0 0.9756 0.0045 0.9666 0.0128 0.9690 0.0102 0.9651 0.0205
ResNet50 0.9811 0.0036 0.9683 0.0155 0.9803 0.0118 0.9575 0.0233
ViT-B/16 0.9788 0.0064 0.9697 0.0114 0.9800 0.0087 0.9604 0.0171

3.3. Entrenamiento, validacion cruzada estratificada y consistencia inter-fold

La evolucion del F1 macro durante el proceso de entrenamiento y validacién mostré un patrén de
convergencia estable en los tres modelos, sin indicios de sobreajuste y con fluctuaciones minimas entre
folds. En las Figuras 3, 4 y 5 se observa la consistencia de las curvas de validacién correspondientes a
EfficientNet-BO, ResNet50 y ViT-B/16, respectivamente, lo que confirma la estabilidad del proceso de
optimizacion y la reproducibilidad de los resultados obtenidos.
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Figura 3. Evolucién del F1 Macro (validacion) por fold en modelo EfficientNetB0
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Figura 4. Evolucién del F1 Macro (validacién) por fold en modelo ResNet50
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Figura 5. Evolucién del F1 Macro (validacion) por fold en modelo ViT-B/16

El andlisis de consistencia entre folds mostré una variabilidad baja en todas las configuraciones
experimentales, con desviaciones estandar de la métrica F1 macro cercanas a una centésima, lo que refleja
una alta estabilidad del proceso de entrenamiento y validacién. Este comportamiento sugiere que las
decisiones adoptadas durante el preprocesamiento de las imagenes y el uso de la validacién cruzada
estratificada aportaron robustez al procedimiento, evitando la influencia de un fold dominante que pudiera
sesgar los promedios globales. Los resultados detallados de cada arquitectura en los cinco folds se
presentan en la Tabla 2, donde se observa la consistencia de las métricas de exactitud, precisién, recall y
F1, evidenciando un rendimiento equilibrado entre modelos y particiones.

Asimismo, las curvas de entrenamiento y validacién mostraron una convergencia rapida, alcanzando
estabilidad en menos de diez épocas. El uso del programador de tasa de aprendizaje (scheduler) favorecio
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la estabilizacion de la pérdida en las etapas finales del entrenamiento, mientras que el criterio de parada
temprana contribuy6 a prevenir el sobreajuste. En conjunto, estos resultados confirman la
reproducibilidad del pipeline propuesto y la consistencia inter-fold de los modelos, lo que respalda la
validez de las conclusiones derivadas del andlisis comparativo.

Tabla 2. Métricas de validacién cruzada estratificada

Fold Modelo Exactitud F1 Precision Recall
1 ResNet50 0.9863 0.9862 0.9914 0.9814
1 EfficientNet-BO 0.9795 0.9799 0.9765 0.9834
1 ViT-B/16 0.9806 0.9807 0.9825 0.9789
2 ResNet50 0.9795 0.9539 0.9820 0.9299
2 EfficientNet-BO 0.9692 0.9614 0.9557 0.9676
2 ViT-B/16 0.9681 0.9610 0.9665 0.9560
3 ResNet50 0.9772 0.9538 0.9601 0.9479
3 EfficientNet-B0 0.9727 0.9488 0.9709 0.9305
3 ViT-B/16 0.9784 0.9543 0.9781 0.9343
4 ResNet50 0.9829 0.9829 0.9835 0.9823
4 EfficientNet-BO 0.9784 0.9645 0.9616 0.9675
4 ViT-B/16 0.9829 0.9754 0.9899 0.9619
5 ResNet50 0.9795 0.9645 0.9844 0.9463
5 EfficientNet-B0 0.9784 0.9783 0.9801 0.9765

3.4. Matrices de confusion y comportamiento por clase

Las matrices de confusién agregadas por modelo, obtenidas a partir de la suma de los cinco folds, junto con
sus versiones normalizadas por fila, evidenciaron un comportamiento equilibrado entre clases, sin indicios
de patrones de confusion sistematicos dominantes. La normalizacién por fila permitié analizar de manera
detallada el recall por clase, mostrando ligeras oscilaciones entre arquitecturas que resultan coherentes
con el rango estrecho de valores de F1 macro previamente reportado. Estas variaciones no modifican la
conclusién general del estudio: los tres modelos presentan una capacidad consistente para discriminar
correctamente entre las categorias Black Pod Rot, Pod Borer y Healthy, manteniendo un desempefo
homogéneo en el conjunto de datos evaluado (Figura 6).
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Figura 6. Matrices de confusion por modelo

3.5. Analisis estadistico inferencial (ANOVA y post-hoc)
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La comparacién estadistica del rendimiento medio entre las tres arquitecturas se realiz6 mediante un
analisis de varianza de medidas repetidas (ANOVA-RM) aplicado sobre la métrica F1 macro, considerando
el fold como sujeto y el modelo como factor intra-sujeto. Los resultados no mostraron diferencias
estadisticamente significativas entre arquitecturas (F = 0.278, p = 0.7645), lo que sugiere un
comportamiento homogéneo en el rendimiento promedio de los modelos. Este hallazgo se corroboré
mediante pruebas post-hoc pareadas con correccién de Bonferroni, en las que ninguno de los contrastes
por pares alcanzé significancia estadistica. En particular, la diferencia media de F1 macro entre ViT-B/16
y EfficientNet-BO fue de aproximadamente +0.0031 con un intervalo de confianza del 95 % y p = 0.25,
mientras que la diferencia entre ViT-B/16 y ResNet50 fue de +0.0014, también no significativa. En
conjunto, estos resultados indican que, aunque ViT-B/16 present6 la media mas alta, las discrepancias
observadas fueron pequefias y estadisticamente atribuibles a la variabilidad del muestreo, confirmando la
robustez de las tres arquitecturas evaluadas (Tabla 3).

Tabla 3. Pruebas post-hoc por par de modelos

Modelos t p_raw
ResNet50 vs EfficientNet BO | 0.297661326 0.780781239
ResNet50 vs ViT-B/16 -0.370845959 0.72955701
EfficientNet BO vs ViT-B/16 | -1.347132941 0.249193532

Implicaciones practicas

Los resultados obtenidos demuestran que las tres arquitecturas evaluadas ofrecen un desempeiio
competitivo y estable para la clasificacién automatica de enfermedades del cacao, con valores de F1 macro
cercanos y sin diferencias estadisticamente significativas. Este hallazgo confirma que la eficacia del modelo
no depende estrictamente de la arquitectura empleada, sino de la coherencia del pipeline de
preprocesamiento, la validacion estratificada y el control de sobreajuste. En consecuencia, la eleccién del
modelo de referencia puede guiarse por criterios operativos y contextuales de implementacién: Vision
Transformer (ViT-B/16), por su ligera ventaja media y capacidad para modelar relaciones espaciales
globales; ResNet50, por su madurez, amplio soporte en bibliotecas de produccién y comportamiento muy
cercano al primero; y EfficientNet-B0, cuando se prioriza la eficiencia computacional y la reduccién de la
huella de despliegue.

Estos resultados respaldan lo sefialado por Ray et al. (2025) y Deepa et al. (2025), quienes destacan que
los modelos de aprendizaje profundo aplicados al diagndstico agricola ofrecen altos niveles de precision
incluso con arquitecturas ligeras, siempre que se acompafen de estrategias de entrenamiento consistentes
y datos adecuadamente preprocesados. Asimismo, confirman la tendencia observada por Lebrini & Ayerdi
Gotor (2024) y Shafay et al. (2025), respecto a que la eficacia de la visién por computadora en el ambito
fitosanitario depende mas del rigor metodolégico que de la complejidad del modelo en si.

Desde el punto de vista aplicado, los resultados contribuyen a llenar un vacio metodolégico identificado en
la literatura reciente: la falta de comparaciones sistematicas entre arquitecturas contemporaneas bajo
marcos estadisticos controlados. En este sentido, el estudio aporta evidencia reproducible que orienta la
seleccion de modelos segln el equilibrio entre precisién, estabilidad y viabilidad de implementacién en
entornos agricolas de recursos limitados, una linea de investigacion destacada por Bono et al. (2026) en el
contexto de la agricultura inteligente. Finalmente, las mejoras futuras deberian enfocarse no tanto en el
reemplazo de arquitecturas, sino en optimizar estrategias complementarias como el rebalanceo de clases,
los aumentos de datos especificos por tipo de lesién y el ajuste adaptativo de umbrales de decision,
siguiendo las recomendaciones de Song et al. (2025) sobre la necesidad de integrar pipelines robustos que
maximicen la generalizacion en aplicaciones de visiéon por computadora agricola.
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CONCLUSIONES

El estudio demostré que las arquitecturas de aprendizaje profundo evaluadas presentan un rendimiento
estadisticamente equivalente en la deteccion automatica de plagas y enfermedades del cacao, alcanzando
valores de F1 macro superiores al 0.96 y desviaciones estandar reducidas entre folds. Estos resultados
evidencian la robustez del pipeline de visiéon por computadora implementado y la eficacia de las estrategias
de preprocesamiento, validaciéon y regularizacion empleadas. La ausencia de diferencias significativas
entre modelos indica que la seleccidn del enfoque puede guiarse por criterios operativos, considerando el
balance entre precision, eficiencia computacional y escalabilidad del despliegue. Asimismo, se confirma que
la estabilidad y generalizacién del sistema dependen principalmente de la calidad del entrenamiento y del
manejo del desbalance de clases, mas que del tipo de arquitectura utilizada. En conjunto, los hallazgos
contribuyen al desarrollo de sistemas inteligentes reproducibles y escalables para el monitoreo
fitosanitario, fortaleciendo la integracion de la inteligencia artificial en la agricultura de precisién y su
aplicacién en contextos productivos reales.
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