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RESUMEN 

Este estudio analizo  la aplicacio n del aprendizaje profundo en la deteccio n fitosanitaria automatizada del cacao mediante 

visio n por computadora, comparando el desempen o de tres arquitecturas: ResNet50, EfficientNet-B0 y Vision Transformer 

(ViT-B/16). Se implemento  un pipeline reproducible que integro  preprocesamiento de ima genes, validacio n cruzada 

estratificada de cinco pliegues y ana lisis estadí stico inferencial mediante ANOVA de medidas repetidas. El conjunto de datos 

estuvo conformado por 4 390 ima genes RGB de frutos de cacao, distribuidas en tres clases desbalanceadas: Healthy, Black 

Pod Rot y Pod Borer. Todos los modelos fueron ajustados mediante fine-tuning completo y entrenados con el optimizador 

AdamW, parada temprana y programacio n dina mica de la tasa de aprendizaje. Los resultados mostraron valores medios de 

F1 macro superiores a 0.96 en las tres arquitecturas, sin diferencias estadí sticamente significativas entre modelos (F = 0.278, 

p = 0.7645). Las curvas de entrenamiento evidenciaron convergencia estable y baja variabilidad inter-fold, sin indicios de 

sobreajuste. Los hallazgos indican que el rendimiento depende principalmente de la calidad del pipeline experimental y del 

manejo del desbalance de clases, ma s que del tipo de arquitectura empleada. 

Palabras clave: aprendizaje profundo; diagno stico automatizado; modelos de clasificacio n; sanidad vegetal; visio n artificial  

ABSTRACT 

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision, 

comparing the performance of three architectures: ResNet50, EfficientNet-B0, and Vision Transformer (ViT-B/16). A 

reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential 

statistical analysis using repeated-measures ANOVA. The dataset consisted of 4,390 RGB images of cacao fruits distributed 

across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using 

the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1 -macro values 

above 0.96 across all architectures, with no statistically significant differences among models (F =  0.278, p = 0.7645). Training 

curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate that 

system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather than 

on the specific architecture employed. 
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1. INTRODUCCIÓN  

El cacao (Theobroma cacao L.) es uno de los cultivos agrí colas ma s importantes a nivel mundial, con un 

papel clave en la economí a de los paí ses tropicales y en la generacio n de ingresos para millones de pequen os 

productores (Charry et al., 2025; Vinci et al., 2024). Su grano fermentado y seco constituye la materia prima 

esencial para la industria del chocolate y diversos productos de confiterí a (Paparella et al., 2025; Quintero 

et al., 2025). Sin embargo, la produccio n de cacao enfrenta serias amenazas derivadas de enfermedades 

fu ngicas y plagas que reducen dra sticamente el rendimiento y comprometen la calidad del grano, afectando 

la competitividad global de la cadena de valor (Cilas & Bastide, 2020; Delgado-Ospina et al., 2021; Zahlul 

Ikhsan et al., 2024). Entre las patologí as ma s relevantes se encuentran la Black Pod Rot, causada por 

Phytophthora spp., y el Pod Borer, ambas responsables de pe rdidas econo micas significativas en zonas de 

produccio n tropical (Magfirah et al., 2025; Puig et al., 2022; Schmidt et al., 2023). 

Tradicionalmente, la deteccio n de estas afecciones se ha basado en inspecciones visuales realizadas por 

agricultores o especialistas, un procedimiento subjetivo que depende de la experiencia individual y de la 

interpretacio n morfolo gica de los sí ntomas (Miyittah et al., 2022; Polania Bello, 2023). Este enfoque, 

adema s de ser lento y costoso, presenta una alta variabilidad en la precisio n del diagno stico, lo que retrasa 

la aplicacio n de medidas de control efectivas y aumenta la propagacio n de la enfermedad. En consecuencia, 

la industria agrí cola demanda me todos ma s confiables, ra pidos y reproducibles para la identificacio n 

temprana de plagas y enfermedades, que permitan optimizar los procesos de manejo y mejorar la 

productividad de los cultivos (Raj & Prahadeeswaran, 2025; Wu et al., 2025). 

En este contexto, los avances en visio n por computadora y aprendizaje automa tico (Machine Learning, ML) 

han abierto nuevas oportunidades para la automatizacio n de tareas de diagno stico en la agricultura de 

precisio n (Taha et al., 2025; Waqas et al., 2025). Estas tecnologí as permiten analizar grandes volu menes de 

datos visuales mediante algoritmos capaces de reconocer patrones complejos en ima genes de hojas, frutos 

o tallos (Injante et al., 2025; Lebrini & Ayerdi Gotor, 2024). Los sistemas de visio n artificial (SVA), al 

combinar hardware o ptico y software de procesamiento digital de ima genes, se han consolidado como 

herramientas no destructivas, ra pidas y rentables para la caracterizacio n y clasificacio n de productos 

agrí colas, logrando niveles de exactitud comparables e incluso superiores a los obtenidos por expertos 

humanos (Anjali et al., 2024; Song et al., 2025). 

El aprendizaje profundo (Deep Learning, DL), como evolucio n del ML, ha revolucionado el campo de la 

visio n por computadora al introducir modelos capaces de aprender representaciones jera rquicas 

directamente a partir de los datos (Ray et al., 2025; Villalobos-Culqui et al., 2025). Estos enfoques permiten 

extraer de manera automa tica caracterí sticas relevantes de las ima genes, eliminando la necesidad de una 

ingenierí a manual de atributos y aumentando la capacidad de generalizacio n en tareas complejas (Mall et 

al., 2023). Gracias a su arquitectura multinivel, el DL ha demostrado un desempen o sobresaliente en la 

deteccio n, segmentacio n y clasificacio n de patrones visuales, consolida ndose como el paradigma 

dominante en aplicaciones de diagno stico agrí cola, control de calidad y monitoreo automatizado de cultivos 

(Deepa et al., 2025; Shafay et al., 2025). 

No obstante, la literatura actual revela limitaciones importantes. La mayorí a de los estudios se centra en 

una sola arquitectura o evalu a modelos sin aplicar me todos estadí sticos que permitan comparar su 

rendimiento con significancia inferencial. Esta falta de ana lisis comparativo riguroso impide identificar con 

claridad que  arquitecturas son ma s estables, precisas y eficientes en contextos agrí colas con recursos 

computacionales limitados. Adema s, la mayorí a de los experimentos carece de esquemas de validacio n 

cruzada o protocolos reproducibles, dificultando la replicabilidad de los resultados y su adopcio n pra ctica. 

Frente a esta brecha, surge la necesidad de realizar evaluaciones sistema ticas que comparen enfoques 

contempora neos de aprendizaje profundo bajo un marco experimental controlado. Estos modelos 

presentan distintos compromisos entre precisio n, complejidad y eficiencia computacional, por lo que 
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resulta fundamental analizar su rendimiento en tareas de clasificacio n automa tica de plagas y 

enfermedades agrí colas. Evaluar su comportamiento comparativo permite establecer lineamientos 

te cnicos para su implementacio n en sistemas de monitoreo inteligente y diagno stico fitosanitario 

automatizado, promoviendo soluciones que combinen alto desempen o, estabilidad y viabilidad operativa 

en entornos reales de produccio n (Bono et al., 2026). 

En este estudio se propone un enfoque de visio n por computadora impulsado por aprendizaje profundo 

(Deep Learning–Driven Computer Vision) orientado a la deteccio n temprana y automa tica de plagas y 

enfermedades en frutos de cacao. Se implemento  un proceso metodolo gico reproducible que integra 

estrategias de preprocesamiento, validacio n cruzada estratificada y ana lisis estadí stico para comparar el 

rendimiento de diferentes modelos de aprendizaje profundo. El objetivo es identificar patrones visuales 

asociados a distintas condiciones fitosanitarias y evaluar la estabilidad y precisio n de los modelos en 

escenarios de clasificacio n automatizada. Este trabajo busca aportar evidencia te cnica y pra ctica para el 

desarrollo de sistemas inteligentes de diagno stico agrí cola, promoviendo la sostenibilidad y la eficiencia en 

la produccio n mundial de cacao. 

2. MATERIALES Y MÉTODOS 

El desarrollo experimental se estructuro  en un pipeline reproducible de visio n por computadora disen ado 

para la clasificacio n automa tica de enfermedades en frutos de cacao. El proceso comprendio  las siguientes 

fases: (1) exploracio n de datos (EDA), (2) preprocesamiento, (3) entrenamiento con validacio n cruzada 

estratificada, (4) evaluacio n mediante me tricas de clasificacio n y (5) ana lisis estadí stico inferencial para 

contrastar el desempen o de los modelos. En la figura 1 se muestra el esquema metodolo gico garantiza la 

trazabilidad de los resultados y la comparabilidad entre configuraciones, permitiendo replicar el estudio 

en distintos contextos de produccio n o con nuevos conjuntos de datos. 

 
Figura 1. Esquema metodolo gico propuesto 

Conjunto de datos y preparación inicial 

Se utilizo  el conjunto de ima genes llamado “Cacao Diseases”, obtenido a trave s de Kaggle (carpetas por 

clase), compuesto por 4390 ima genes RGB de frutos de cacao etiquetadas en tres categorí as: Black Pod Rot 

(943), Pod Borer (103) y Healthy (3344). Las ima genes se organizaron bajo el esquema ImageFolder (una 

carpeta por clase) para su consumo directo por PyTorch. Antes de entrenar, se ejecuto  una EDA ba sica: 

primero un conteo por clase para identificar desbalances, luego el muestreo de taman os de imagen para 

estimar la variabilidad de resoluciones y, por u ltimo, un mosaico visual de ejemplos por clase. Cualquier 

imagen corrupta o ilegible se descarto . 
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Diseño experimental y particionamiento  

Para obtener estimaciones robustas y habilitar comparacio n estadí stica entre arquitecturas, se aplico  

validacio n cruzada estratificada de 5 folds (mismo reparto por clase en cada fold). En cada fold se entreno  

y valido  cada uno de los tres modelos sobre las mismas particiones, lo que posteriormente permitio  tratar 

al fold como “sujeto” en el ana lisis de medidas repetidas. Se fijo  una semilla global (42) para asegurar 

reproducibilidad. 

Preprocesamiento y aumentos 

Con el fin de preservar sen ales croma ticas relevantes para sí ntomas tales como manchas, micelio, o 

decoloraciones, se usaron para metros de aumentos moderados y normalizacio n esta ndar de ImageNet: 

Entrenamiento:  
train_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.RandomResizedCrop(img_size, scale=(0.8, 1.0)), 

      transforms.RandomHorizontalFlip(), 

      transforms.RandomRotation(10), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

]) 

Validacio n:  
eval_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.CenterCrop(img_size), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

    ]) 

El taman o de entrada se fijo  en 224×224px para permitir la compatibilidad con el esta ndar de ImageNet y 

mejorar la eficiencia de co mputo. Las transformaciones en los aumentadores fueron conservadores, con el 

propo sito de no distorsionar rasgos finos en las lesiones. 

Modelos evaluados 

Se evaluaron tres arquitecturas de aprendizaje profundo ampliamente utilizadas en estudios recientes de 

clasificacio n de ima genes agro-fitopatolo gicas: ResNet50 (He et al., 2015), EfficientNet-B0 (Tan & Le, 2020) 

y Vision Transformer (ViT-B/16) (Wang et al., 2025). Todas las redes fueron preentrenadas en el conjunto 

de datos ImageNet-1K, con el objetivo de aprovechar las representaciones visuales generales aprendidas a 

partir de millones de ima genes naturales. Posteriormente, se reconfiguraron las capas de salida para 

adaptarlas al dominio especí fico del problema. En el caso de ResNet50, la capa final fue reemplazada por 

una capa totalmente conectada con tres neuronas correspondientes a las clases de intere s. En EfficientNet-

B0, se sustituyo  la u ltima capa del clasificador por una salida de tres clases, mientras que en ViT-B/16 se 

reemplazo  el componente de clasificacio n original por una capa lineal con la misma dimensionalidad de 

salida. 

En los tres modelos se realizo  un ajuste completo de los para metros (fine-tuning total), en lugar de congelar 

las capas convolucionales o de atencio n preentrenadas. Esta decisio n metodolo gica responde a la diferencia 

sustancial entre el dominio fuente, representado por ImageNet, basado en objetos naturales y escenas 

generales, y el dominio objetivo del presente estudio, centrado en ima genes de frutos de cacao afectados 

por lesiones y plagas. El ajuste integral de pesos permite que las arquitecturas aprendan representaciones 

discriminativas ma s especí ficas del contexto fitopatolo gico, optimizando la sensibilidad del modelo ante 

patrones visuales sutiles y texturas asociadas a los diferentes estados de salud del fruto. 
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Configuración de entrenamiento 

El entrenamiento de los modelos se implemento  utilizando el framework PyTorch, aplicando un conjunto 

uniforme de hiperpara metros con el propo sito de garantizar la comparabilidad entre arquitecturas. Se 

empleo  el optimizador AdamW (Kingma & Ba, 2014) con una tasa de aprendizaje inicial de 1×10⁻⁴ y un 

para metro de decaimiento de peso (weight decay) de 1×10⁻⁴, configuraciones que equilibran la estabilidad 

del gradiente y la regularizacio n del modelo durante el aprendizaje. La funcio n de pe rdida seleccionada fue 

la Cross-Entropy Loss, adecuada para problemas de clasificacio n multiclase. El taman o de lote se establecio  

en 32 ima genes por iteracio n, y el proceso de entrenamiento se ejecuto  durante un ma ximo de 10 e pocas 

por fold, dentro del esquema de validacio n cruzada estratificada. Para ajustar dina micamente la tasa de 

aprendizaje, se incorporo  un programador ReduceLROnPlateau, el cual reduce el valor de la tasa de 

aprendizaje en un 50 % cuando la pe rdida de validacio n no muestra mejora significativa. Asimismo, se 

implemento  un mecanismo de parada temprana con una paciencia de tres e pocas, seleccionando como 

punto o ptimo el checkpoint correspondiente al mayor valor de F1 macro alcanzado en la validacio n. Este 

conjunto de estrategias permitio  controlar el sobreajuste, estabilizar la convergencia y optimizar el uso de 

recursos computacionales, lo que resulta adecuado tanto para entornos con limitaciones de hardware como 

para escenarios de inferencia en dispositivos de borde. 

Protocolo de evaluación por fold 

Al final de cada e poca se evaluo  en el conjunto de validacio n del fold y, una vez activado el criterio de parada, 

se cargo  el mejor estado del modelo para computar las me tricas finales del fold: Exactitud (Accuracy), F1 

macro, Precisio n macro y Recall macro. Así  como un reporte de clasificacio n por clase (precision/recall/F1) 

y la matriz de confusio n. 

Las matrices de confusio n por fold se almacenaron y posteriormente se agregaron por modelo de dos 

maneras: Por suma de cuentas absolutas y mediante una versio n normalizada por fila (recall por clase), con 

el fin de analizar patrones de confusio n sistema ticos entre clases sin que un u nico fold domine la 

interpretacio n. 

Comparación estadística entre modelos 

Para contrastar el rendimiento medio de las tres arquitecturas se aplico  un disen o estadí stico de medidas 

repetidas considerando los cinco folds generados en la validacio n cruzada. En primer lugar, se construyo  

una tabla en formato largo que incluyo  como factores el fold (tratado como sujeto), el modelo (considerado 

como factor intra-sujeto con tres niveles) y la me trica de respuesta F1 macro. Posteriormente, se realizo  un 

ana lisis de varianza de medidas repetidas (ANOVA-RM) utilizando el modelo como efecto intra-sujeto y el 

fold como unidad de observacio n, estableciendo un nivel de significancia de α = 0.05. En los casos en que se 

detecto  significancia estadí stica, se efectuo  un ana lisis post-hoc mediante pruebas t pareadas entre cada 

par de modelos, aplicando la correccio n de Bonferroni para controlar el error tipo I acumulado. Este 

enfoque permitio  evaluar de manera robusta las diferencias atribuibles a la arquitectura, controlando la 

variabilidad introducida por las particiones de validacio n y evitando conclusiones dependientes de una 

u nica divisio n entrenamiento-validacio n. 

3. RESULTADOS Y DISCUSIÓN  

3.1. Exploración de datos (EDA) 

Tras la exploracio n inicial del conjunto de datos se contabilizaron 4 390 ima genes distribuidas en tres clases 

con un desbalance considerable: la categorí a Healthy concentro  3 344 ima genes (76.2 %), mientras que 

Black Pod Rot presento  943 (21.5 %) y Pod Borer u nicamente 103 (2.35 %), lo que representa una razo n 

aproximada de 32.5 veces entre la clase mayoritaria y la minoritaria. El ana lisis geome trico realizado sobre 

una muestra de 300 ima genes indico  que todas las capturas presentan una relacio n de aspecto cercana a 
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1.0, con resoluciones comprendidas entre 1080×1080 y 2160×2160 pí xeles, lo que confirma la uniformidad 

del formato de adquisicio n. Estas observaciones justificaron la utilizacio n de una validacio n cruzada 

estratificada para conservar las proporciones por clase en cada fold, así  como la priorizacio n de la me trica 

F1 macro en la seleccio n de checkpoints con el fin de mitigar el sesgo inducido por el desbalance de clases. 

Asimismo, se opto  por aplicar aumentos de datos moderados durante el entrenamiento, buscando mejorar 

la capacidad de generalizacio n del modelo sin comprometer la integridad de las sen ales visuales asociadas 

a las lesiones (Figura 2). 

 
Figura 2. Gra fico de distribucio n por clases 

3.2. Desempeño global de los modelos 

El ana lisis del desempen o global de los modelos evidencio  un rendimiento altamente competitivo entre las 

tres arquitecturas evaluadas. El modelo Vision Transformer (ViT-B/16) alcanzo  la mayor media de F1 

macro, con un valor de 0.9697 y una desviacio n esta ndar de 0.0114, junto con una exactitud promedio de 

0.9788. En segundo lugar, se ubico  ResNet50, con una F1 macro media de 0.9683, seguida de EfficientNet-

B0, que obtuvo 0.9666. Las diferencias entre los tres modelos resultaron mí nimas, con una separacio n 

promedio de aproximadamente 0.3 puntos porcentuales entre el mejor y el de menor desempen o en la 

me trica F1 macro. Este comportamiento estrechamente agrupado refleja la robustez de las arquitecturas y 

confirma la efectividad del esquema de preprocesamiento y validacio n adoptado en el estudio (Tabla 1). 

Tabla 1. Resumen de me tricas de evaluacio n por modelo 

Modelo 
Exac. 

Media 
Desv. 
Exac. 

F1 
Media 

Desv. F1 
Prec. 

Media 
Desv. 
Prec. 

Recall 
Media 

Desv. 
Recall 

EfficientNet-B0 0.9756 0.0045 0.9666 0.0128 0.9690 0.0102 0.9651 0.0205 

ResNet50 0.9811 0.0036 0.9683 0.0155 0.9803 0.0118 0.9575 0.0233 

ViT-B/16 0.9788 0.0064 0.9697 0.0114 0.9800 0.0087 0.9604 0.0171 

 

3.3. Entrenamiento, validación cruzada estratificada y consistencia inter-fold 

La evolucio n del F1 macro durante el proceso de entrenamiento y validacio n mostro  un patro n de 

convergencia estable en los tres modelos, sin indicios de sobreajuste y con fluctuaciones mí nimas entre 

folds. En las Figuras 3, 4 y 5 se observa la consistencia de las curvas de validacio n correspondientes a 

EfficientNet-B0, ResNet50 y ViT-B/16, respectivamente, lo que confirma la estabilidad del proceso de 

optimizacio n y la reproducibilidad de los resultados obtenidos. 
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Figura 3. Evolucio n del F1 Macro (validacio n) por fold en modelo EfficientNetB0 

 
Figura 4. Evolucio n del F1 Macro (validacio n) por fold en modelo ResNet50 

 
Figura 5. Evolucio n del F1 Macro (validacio n) por fold en modelo ViT-B/16 

El ana lisis de consistencia entre folds mostro  una variabilidad baja en todas las configuraciones 

experimentales, con desviaciones esta ndar de la me trica F1 macro cercanas a una cente sima, lo que refleja 

una alta estabilidad del proceso de entrenamiento y validacio n. Este comportamiento sugiere que las 

decisiones adoptadas durante el preprocesamiento de las ima genes y el uso de la validacio n cruzada 

estratificada aportaron robustez al procedimiento, evitando la influencia de un fold dominante que pudiera 

sesgar los promedios globales. Los resultados detallados de cada arquitectura en los cinco folds se 

presentan en la Tabla 2, donde se observa la consistencia de las me tricas de exactitud, precisio n, recall y F1, 

evidenciando un rendimiento equilibrado entre modelos y particiones. 
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Asimismo, las curvas de entrenamiento y validacio n mostraron una convergencia ra pida, alcanzando 

estabilidad en menos de diez e pocas. El uso del programador de tasa de aprendizaje (scheduler) favorecio  

la estabilizacio n de la pe rdida en las etapas finales del entrenamiento, mientras que el criterio de parada 

temprana contribuyo  a prevenir el sobreajuste. En conjunto, estos resultados confirman la reproducibilidad 

del pipeline propuesto y la consistencia inter-fold de los modelos, lo que respalda la validez de las 

conclusiones derivadas del ana lisis comparativo. 

Tabla 2. Me tricas de validacio n cruzada estratificada 

Fold Modelo Exactitud F1 Precisión Recall 
1 ResNet50 0.9863 0.9862 0.9914 0.9814 

1 EfficientNet-B0 0.9795 0.9799 0.9765 0.9834 
1 ViT-B/16 0.9806 0.9807 0.9825 0.9789 
2 ResNet50 0.9795 0.9539 0.9820 0.9299 
2 EfficientNet-B0 0.9692 0.9614 0.9557 0.9676 

2 ViT-B/16 0.9681 0.9610 0.9665 0.9560 
3 ResNet50 0.9772 0.9538 0.9601 0.9479 
3 EfficientNet-B0 0.9727 0.9488 0.9709 0.9305 

3 ViT-B/16 0.9784 0.9543 0.9781 0.9343 
4 ResNet50 0.9829 0.9829 0.9835 0.9823 
4 EfficientNet-B0 0.9784 0.9645 0.9616 0.9675 

4 ViT-B/16 0.9829 0.9754 0.9899 0.9619 
5 ResNet50 0.9795 0.9645 0.9844 0.9463 
5 EfficientNet-B0 0.9784 0.9783 0.9801 0.9765 

3.4. Matrices de confusión y comportamiento por clase 

Las matrices de confusio n agregadas por modelo, obtenidas a partir de la suma de los cinco folds, junto con 

sus versiones normalizadas por fila, evidenciaron un comportamiento equilibrado entre clases, sin indicios 

de patrones de confusio n sistema ticos dominantes. La normalizacio n por fila permitio  analizar de manera 

detallada el recall por clase, mostrando ligeras oscilaciones entre arquitecturas que resultan coherentes 

con el rango estrecho de valores de F1 macro previamente reportado. Estas variaciones no modifican la 

conclusio n general del estudio: los tres modelos presentan una capacidad consistente para discriminar 

correctamente entre las categorí as Black Pod Rot, Pod Borer y Healthy, manteniendo un desempen o 

homoge neo en el conjunto de datos evaluado (Figura 6). 

 
Figura 6. Matrices de confusio n por modelo 
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3.5. Análisis estadístico inferencial (ANOVA y post-hoc) 

La comparacio n estadí stica del rendimiento medio entre las tres arquitecturas se realizo  mediante un 

ana lisis de varianza de medidas repetidas (ANOVA-RM) aplicado sobre la me trica F1 macro, considerando 

el fold como sujeto y el modelo como factor intra-sujeto. Los resultados no mostraron diferencias 

estadí sticamente significativas entre arquitecturas (F = 0.278, p = 0.7645), lo que sugiere un 

comportamiento homoge neo en el rendimiento promedio de los modelos. Este hallazgo se corroboro  

mediante pruebas post-hoc pareadas con correccio n de Bonferroni, en las que ninguno de los contrastes 

por pares alcanzo  significancia estadí stica. En particular, la diferencia media de F1 macro entre ViT-B/16 y 

EfficientNet-B0 fue de aproximadamente +0.0031 con un intervalo de confianza del 95 % y p ≈ 0.25, 

mientras que la diferencia entre ViT-B/16 y ResNet50 fue de +0.0014, tambie n no significativa. En conjunto, 

estos resultados indican que, aunque ViT-B/16 presento  la media ma s alta, las discrepancias observadas 

fueron pequen as y estadí sticamente atribuibles a la variabilidad del muestreo, confirmando la robustez de 

las tres arquitecturas evaluadas (Tabla 3). 

Tabla 3. Pruebas post-hoc por par de modelos 

Modelos t p_raw 

ResNet50 vs EfficientNet B0 0.297661326 0.780781239 
ResNet50 vs ViT-B/16 -0.370845959 0.72955701 

EfficientNet B0 vs ViT-B/16 -1.347132941 0.249193532 

Implicaciones prácticas 

Los resultados obtenidos demuestran que las tres arquitecturas evaluadas ofrecen un desempen o 

competitivo y estable para la clasificacio n automa tica de enfermedades del cacao, con valores de F1 macro 

cercanos y sin diferencias estadí sticamente significativas. Este hallazgo confirma que la eficacia del modelo 

no depende estrictamente de la arquitectura empleada, sino de la coherencia del pipeline de 

preprocesamiento, la validacio n estratificada y el control de sobreajuste. En consecuencia, la eleccio n del 

modelo de referencia puede guiarse por criterios operativos y contextuales de implementacio n: Vision 

Transformer (ViT-B/16), por su ligera ventaja media y capacidad para modelar relaciones espaciales 

globales; ResNet50, por su madurez, amplio soporte en bibliotecas de produccio n y comportamiento muy 

cercano al primero; y EfficientNet-B0, cuando se prioriza la eficiencia computacional y la reduccio n de la 

huella de despliegue. 

Estos resultados respaldan lo sen alado por Ray et al. (2025) y Deepa et al. (2025), quienes destacan que los 

modelos de aprendizaje profundo aplicados al diagno stico agrí cola ofrecen altos niveles de precisio n 

incluso con arquitecturas ligeras, siempre que se acompan en de estrategias de entrenamiento consistentes 

y datos adecuadamente preprocesados. Asimismo, confirman la tendencia observada por Lebrini & Ayerdi 

Gotor (2024) y Shafay et al. (2025), respecto a que la eficacia de la visio n por computadora en el a mbito 

fitosanitario depende ma s del rigor metodolo gico que de la complejidad del modelo en sí . 

Desde el punto de vista aplicado, los resultados contribuyen a llenar un vací o metodolo gico identificado en 

la literatura reciente: la falta de comparaciones sistema ticas entre arquitecturas contempora neas bajo 

marcos estadí sticos controlados. En este sentido, el estudio aporta evidencia reproducible que orienta la 

seleccio n de modelos segu n el equilibrio entre precisio n, estabilidad y viabilidad de implementacio n en 

entornos agrí colas de recursos limitados, una lí nea de investigacio n destacada por Bono et al. (2026) en el 

contexto de la agricultura inteligente. Finalmente, las mejoras futuras deberí an enfocarse no tanto en el 

reemplazo de arquitecturas, sino en optimizar estrategias complementarias como el rebalanceo de clases, 

los aumentos de datos especí ficos por tipo de lesio n y el ajuste adaptativo de umbrales de decisio n, 

siguiendo las recomendaciones de Song et al. (2025) sobre la necesidad de integrar pipelines robustos que 

maximicen la generalizacio n en aplicaciones de visio n por computadora agrí cola. 
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CONCLUSIONES 

El estudio demostro  que las arquitecturas de aprendizaje profundo evaluadas presentan un rendimiento 

estadí sticamente equivalente en la deteccio n automa tica de plagas y enfermedades del cacao, alcanzando 

valores de F1 macro superiores al 0.96 y desviaciones esta ndar reducidas entre folds. Estos resultados 

evidencian la robustez del pipeline de visio n por computadora implementado y la eficacia de las estrategias 

de preprocesamiento, validacio n y regularizacio n empleadas. La ausencia de diferencias significativas entre 

modelos indica que la seleccio n del enfoque puede guiarse por criterios operativos, considerando el balance 

entre precisio n, eficiencia computacional y escalabilidad del despliegue. Asimismo, se confirma que la 

estabilidad y generalizacio n del sistema dependen principalmente de la calidad del entrenamiento y del 

manejo del desbalance de clases, ma s que del tipo de arquitectura utilizada. En conjunto, los hallazgos 

contribuyen al desarrollo de sistemas inteligentes reproducibles y escalables para el monitoreo 

fitosanitario, fortaleciendo la integracio n de la inteligencia artificial en la agricultura de precisio n y su 

aplicacio n en contextos productivos reales.  
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