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RESUMEN

Este estudio analizd la aplicacion del aprendizaje profundo en la deteccion fitosanitaria automatizada del cacao mediante
visiéon por computadora, comparando el desemperio de tres arquitecturas: ResNet50, EfficientNet-B0 y Vision Transformer
(ViT-B/16). Se implementd un pipeline reproducible que integré preprocesamiento de imdgenes, validacién cruzada
estratificada de cinco plieguesy andlisis estadistico inferencial mediante ANOVA de medidas repetidas. El conjunto de datos
estuvo conformado por 4 390 imadgenes RGB de frutos de cacao, distribuidas en tres clases desbalanceadas: Healthy, Black
Pod Rot y Pod Borer. Todos los modelos fueron ajustados mediante fine-tuning completo y entrenados con el optimizador
AdamW, parada temprana y programacioén dindmica de la tasa de aprendizaje. Los resultados mostraron valores medios de
F1 macro superiores a 0.96 en las tres arquitecturas, sin diferencias estadisticamente significativas entre modelos (F=0.27 8,
p = 0.7645). Las curvas de entrenamiento evidenciaron convergencia estable y baja variabilidad inter-fold, sin indicios de
sobreajuste. Los hallazgos indican que el rendimiento depende principalmente de la calidad del pipeline experimental y del
manejo del desbalance de clases, mas que del tipo de arquitectura empleada.

Palabras clave: aprendizaje profundo; diagnéstico automatizado; modelos de clasificacién; sanidad vegetal; vision artificial

ABSTRACT

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision,
comparing the performance of three architectures: ResNet50, EfficientNet-B0, and Vision Transformer (ViT-B/16). A
reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential
statistical analysis using repeated-measures ANOVA. The dataset consisted of 4,390 RGB images of cacao fruits distributed
across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using
the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1 -macro values
above 0.96 across all architectures, with no statistically significant differences among models (F = 0.278,p = 0.7645). Training
curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate that
system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather than
on the specific architecture employed.
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1. INTRODUCCION

El cacao (Theobroma cacao L.) es uno de los cultivos agricolas mas importantes a nivel mundial, con un
papel clave en la economia de los paises tropicalesy en la generacion de ingresos para millones de pequefios
productores (Charry etal., 2025; Vinci et al.,, 2024). Su grano fermentado y seco constituye la materia prima
esencial para laindustria del chocolate y diversos productos de confiteria (Paparella et al., 2025; Quintero
et al,, 2025). Sin embargo, la produccidon de cacao enfrenta serias amenazas derivadas de enfermedades
fangicas y plagas que reducen drasticamente el rendimiento y comprometen la calidad del grano, afectando
la competitividad global de la cadena de valor (Cilas & Bastide, 2020; Delgado-Ospina et al., 2021; Zahlul
Ikhsan et al., 2024). Entre las patologias mas relevantes se encuentran la Black Pod Rot, causada por
Phytophthora spp., y el Pod Borer, ambas responsables de pérdidas econdmicas significativas en zonas de
produccidn tropical (Magfirah et al., 2025; Puig et al., 2022; Schmidt et al., 2023).

Tradicionalmente, la deteccion de estas afecciones se ha basado en inspecciones visuales realizadas por
agricultores o especialistas, un procedimiento subjetivo que depende de la experiencia individual y de la
interpretacion morfoldgica de los sintomas (Miyittah et al., 2022; Polania Bello, 2023). Este enfoque,
ademads de ser lento y costoso, presenta una alta variabilidad en la precision del diagndstico, lo que retrasa
la aplicacion de medidas de control efectivas y aumenta la propagacion de la enfermedad. En consecuencia,
la industria agricola demanda métodos mas confiables, rdpidos y reproducibles para la identificacion
temprana de plagas y enfermedades, que permitan optimizar los procesos de manejo y mejorar la
productividad de los cultivos (Raj & Prahadeeswaran, 2025; Wu et al., 2025).

En este contexto, los avances en visién por computadora y aprendizaje automatico (Machine Learning, ML)
han abierto nuevas oportunidades para la automatizacidn de tareas de diagndstico en la agricultura de
precision (Taha et al., 2025; Waqas et al., 2025). Estas tecnologias permiten analizar grandes volimenes de
datos visuales mediante algoritmos capaces de reconocer patrones complejosen imagenes de hojas, frutos
o tallos (Injante et al., 2025; Lebrini & Ayerdi Gotor, 2024). Los sistemas de visién artificial (SVA), al
combinar hardware dptico y software de procesamiento digital de imagenes, se han consolidado como
herramientas no destructivas, rdpidas y rentables para la caracterizacion y clasificacion de productos
agricolas, logrando niveles de exactitud comparables e incluso superiores a los obtenidos por expertos
humanos (Anjali et al.,, 2024; Song et al., 2025).

El aprendizaje profundo (Deep Learning, DL), como evolucion del ML, ha revolucionado el campo de la
vision por computadora al introducir modelos capaces de aprender representaciones jerarquicas
directamente a partir de los datos (Ray et al., 2025; Villalobos-Culqui et al., 2025). Estos enfoques permiten
extraer de manera automadtica caracteristicas relevantes de las imagenes, eliminando la necesidad de una
ingenieria manual de atributos y aumentando la capacidad de generalizacion en tareas complejas (Mall et
al.,, 2023). Gracias a su arquitectura multinivel, el DL ha demostrado un desempefio sobresaliente en la
deteccién, segmentaciéon y clasificacion de patrones visuales, consoliddndose como el paradigma
dominante en aplicaciones de diagndstico agricola, control de calidad y monitoreo automatizado de cultivos
(Deepa et al,, 2025; Shafay et al., 2025).

No obstante, la literatura actual revela limitaciones importantes. La mayoria de los estudios se centra en
una sola arquitectura o evalla modelos sin aplicar métodos estadisticos que permitan comparar su
rendimiento consignificancia inferencial. Esta falta de andlisis comparativo riguroso impide identificar con
claridad qué arquitecturas son mads estables, precisas y eficientes en contextos agricolas con recursos
computacionales limitados. Ademads, la mayoria de los experimentos carece de esquemas de validacidn
cruzada o protocolos reproducibles, dificultando la replicabilidad de los resultados y su adopcién practica.

Frente a esta brecha, surge la necesidad de realizar evaluaciones sistemdticas que comparen enfoques
contempordneos de aprendizaje profundo bajo un marco experimental controlado. Estos modelos
presentan distintos compromisos entre precision, complejidad y eficiencia computacional, por lo que
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resulta fundamental analizar su rendimiento en tareas de clasificacidn automadtica de plagas y
enfermedades agricolas. Evaluar su comportamiento comparativo permite establecer lineamientos
técnicos para su implementacidn en sistemas de monitoreo inteligente y diagndstico fitosanitario
automatizado, promoviendo soluciones que combinen alto desempeiio, estabilidad y viabilidad operativa
en entornos reales de produccién (Bono et al., 2026).

En este estudio se propone un enfoque de vision por computadora impulsado por aprendizaje profundo
(Deep Learning-Driven Computer Vision) orientado a la deteccidn temprana y automadtica de plagas y
enfermedades en frutos de cacao. Se implementd un proceso metodoldgico reproducible que integra
estrategias de preprocesamiento, validacion cruzada estratificada y andlisis estadistico para comparar el
rendimiento de diferentes modelos de aprendizaje profundo. El objetivo es identificar patrones visuales
asociados a distintas condiciones fitosanitarias y evaluar la estabilidad y precision de los modelos en
escenarios de clasificacion automatizada. Este trabajo busca aportar evidencia técnica y practica para el
desarrollo de sistemas inteligentes de diagndstico agricola, promoviendo la sostenibilidad y la eficiencia en
la produccién mundial de cacao.

2. MATERIALES Y METODOS

El desarrollo experimental se estructurd en un pipeline reproducible de vision por computadora disefiado
para la clasificacién automadtica de enfermedades en frutos de cacao. El proceso comprendid las siguientes
fases: (1) exploracion de datos (EDA), (2) preprocesamiento, (3) entrenamiento con validacion cruzada
estratificada, (4) evaluacion mediante métricas de clasificaciony (5) andlisis estadistico inferencial para
contrastar el desempefio de los modelos. En la figura 1 se muestra el esquema metodoldgico garantiza la
trazabilidad de los resultados y la comparabilidad entre configuraciones, permitiendo replicar el estudio
en distintos contextos de produccién o con nuevos conjuntos de datos.

Validaciéon cruzada
estratificada (5-fold)

e Kaggle: “Cacao Diseases”

s * N = 4390 imagenes RGB ) « Modelos: ResNet50, —
'k ﬁ distribuidas en: -1 —T® EfficientNet-Bo, ViT-B/16 =3
e Healthy: 3344 (76.2%) * Optimizador Adamw
e Black Pod Rot; 943 (21.5%) = Aumentacion moderada (Ir=1e-4, wd = 1e-4)
e Pod Borer: 103 (2.35%) » Normalizacion ImageNet * Early stopping, checkpoint:
o Input 224x224 mejor F1-macro I
Analisis Estadistico
) * Accuracy, F1-macro, Rp-
ANOVA repetida (a = 0..05) macro, Rc-macro m[=muk “\/"}'
Post-hoc t + Bonferroni 1 « Reporte por clase, matriz | | g— qml:l
Sin diferencias significativas: de confusién =| g5
F=0.278, p = 0.7645 « Agregacién de matrices de —N\ @
F1-macro = 96% (para 3 modelos) confusién
Confusién equilibrada

Figura 1. Esquema metodoldgico propuesto

Conjunto de datos y preparacion inicial

Se utilizé el conjunto de imagenes llamado “Cacao Diseases”, obtenido a través de Kaggle (carpetas por
clase), compuesto por 4390 imagenes RGB de frutosde cacao etiquetadas en tres categorias: Black Pod Rot
(943), Pod Borer (103) y Healthy (3344). Las imagenes se organizaron bajo el esquema ImageFolder (una
carpeta por clase) para su consumo directo por PyTorch. Antes de entrenar, se ejecutd una EDA basica:
primero un conteo por clase para identificar desbalances, luego el muestreo de tamafios de imagen para
estimar la variabilidad de resoluciones y, por ltimo, un mosaico visual de ejemplos por clase. Cualquier
imagen corrupta o ilegible se descartd.
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Disefio experimental y particionamiento

Para obtener estimaciones robustas y habilitar comparacion estadistica entre arquitecturas, se aplicé
validacidn cruzada estratificada de 5 folds (mismo reparto por clase en cada fold). En cada fold se entrend
y validé cada uno de los tres modelos sobre las mismas particiones, lo que posteriormente permitid tratar
al fold como “sujeto” en el andlisis de medidas repetidas. Se fijo una semilla global (42) para asegurar
reproducibilidad.

Preprocesamiento y aumentos

Con el fin de preservar sefiales cromdticas relevantes para sintomas tales como manchas, micelio, o
decoloraciones, se usaron parametros de aumentos moderados y normalizacidn estandar de ImageNet:

Entrenamiento:

train tf = transforms.Compose ([
transforms .Resize (int (img size*1.15)),
transforms.RandomResizedCrop (img size, scale=(0.8, .0Y)),
transforms.RandomHorizontalFlip(T,

transforms.RandomRotation (10),
transforms.ToTensor (),
transforms .Normalize (IMAGENET MEAN, IMAGENET STD),

Validacidn:
eval tf = transforms.Compose ([
— transforms.Resize (int (img size*1.15)),
transforms.CenterCrop (img size),

transforms.ToTensor (),
transforms .Normalize (IMAGENET MEAN, IMAGENET STD),
1)

El tamafio de entrada se fijé en 224x224px para permitir la compatibilidad conel estdndar de ImageNet y
mejorar la eficienciade cdmputo. Las transformaciones en los aumentadores fueron conservadores, con el
propdsito de no distorsionar rasgos finos en las lesiones.

Modelos evaluados

Se evaluaron tres arquitecturas de aprendizaje profundo ampliamente utilizadas en estudios recientes de
clasificacién de imagenes agro-fitopatoldgicas: ResNet50 (He et al,, 2015), EfficientNet-B0 (Tan & Le, 2020)
y Vision Transformer (ViT-B/16) (Wang et al., 2025). Todas las redes fueron preentrenadas en el conjunto
de datos ImageNet-1K, con el objetivo de aprovechar las representaciones visuales generales aprendidas a
partir de millones de imdgenes naturales. Posteriormente, se reconfiguraron las capas de salida para
adaptarlas al dominio especifico del problema. En el caso de ResNet50, la capa final fue reemplazada por
una capa totalmente conectada con tres neuronas correspondientes a las clases de interés. En EfficientNet-
BO, se sustituyd la ultima capa del clasificador por una salida de tres clases, mientras que en ViT-B/16 se
reemplazd el componente de clasificacidn original por una capa lineal conla misma dimensionalidad de
salida.

Enlos tres modelos se realizd un ajuste completo de los parametros (fine-tuning total), en lugar de congelar
las capas convolucionales o de atencidn preentrenadas. Esta decisién metodoldgicaresponde ala diferencia
sustancial entre el dominio fuente, representado por ImageNet, basado en objetos naturales y escenas
generales, y el dominio objetivo del presente estudio, centrado en imdagenes de frutos de cacao afectados
por lesiones y plagas. El ajuste integral de pesos permite que las arquitecturas aprendan representaciones
discriminativas mas especificas del contexto fitopatoldgico, optimizando la sensibilidad del modelo ante
patrones visuales sutiles y texturas asociadas a los diferentes estados de salud del fruto.
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Configuracion de entrenamiento

El entrenamiento de los modelos se implementd utilizando el framework PyTorch, aplicando un conjunto
uniforme de hiperpardmetros con el propdsito de garantizar la comparabilidad entre arquitecturas. Se
empled el optimizador AdamW (Kingma & Ba, 2014) con una tasa de aprendizaje inicial de 1x10™* y un
pardmetro de decaimiento de peso (weight decay) de 1x107*, configuraciones que equilibran la estabilidad
del gradiente y la regularizacion del modelo durante el aprendizaje. La funcidn de pérdida seleccionada fue
la Cross-Entropy Loss, adecuada para problemas de clasificacién multiclase. Eltamafio de lote se establecio
en 32 imdagenes por iteracion, y el proceso de entrenamiento se ejecutd durante un maximo de 10 épocas
por fold, dentro del esquema de validacidn cruzada estratificada. Para ajustar dindmicamente la tasa de
aprendizaje, se incorpord un programador ReduceLROnPlateau, el cual reduce el valor de la tasa de
aprendizaje en un 50 % cuando la pérdida de validacién no muestra mejora significativa. Asimismo, se
implementé un mecanismo de parada temprana con una paciencia de tres épocas, seleccionando como
punto éptimo el checkpoint correspondiente al mayor valor de F1 macro alcanzado en la validacién. Este
conjunto de estrategias permitié controlar el sobreajuste, estabilizar la convergencia y optimizar el uso de
recursos computacionales, lo que resulta adecuado tanto para entornos conlimitaciones de hardware como
para escenarios de inferencia en dispositivos de borde.

Protocolo de evaluacion por fold

Al final de cada épocase evalud en el conjunto de validacidn del fold y, una vez activado el criterio de parada,
se cargo el mejor estado del modelo para computar las métricas finales del fold: Exactitud (Accuracy), F1
macro, Precision macroy Recall macro. Asi como un reporte de clasificacion por clase (precision/recall /F1)
y la matriz de confusion.

Las matrices de confusidn por fold se almacenaron y posteriormente se agregaron por modelo de dos
maneras: Por suma de cuentas absolutas y mediante una versién normalizada por fila (recall por clase), con
el fin de analizar patrones de confusidn sistemdticos entre clases sin que un Unico fold domine la
interpretacion.

Comparacion estadistica entre modelos

Para contrastar el rendimiento medio de las tres arquitecturas se aplico un disefio estadistico de medidas
repetidas considerando los cinco folds generados en la validacién cruzada. En primer lugar, se construyo
una tabla en formato largo que incluyd como factores el fold (tratado como sujeto), el modelo (considerado
como factor intra-sujeto con tres niveles) y la métrica de respuesta F1 macro. Posteriormente, se realizé un
andlisis de varianza de medidas repetidas (ANOVA-RM) utilizando el modelo como efecto intra-sujeto y el
fold como unidad de observacion, estableciendo un nivel de significancia de a = 0.05. En los casos en que se
detectd significancia estadistica, se efectud un andlisis post-hoc mediante pruebas t pareadas entre cada
par de modelos, aplicando la correccidn de Bonferroni para controlar el error tipo I acumulado. Este
enfoque permitié evaluar de manera robusta las diferencias atribuibles a la arquitectura, controlando la
variabilidad introducida por las particiones de validacion y evitando conclusiones dependientes de una
Unica divisidn entrenamiento-validacidn.

3. RESULTADOS Y DISCUSION

3.1.Exploraciéon de datos (EDA)

Tras la exploracidninicial del conjunto de datos se contabilizaron 4 390 imagenes distribuidas en tres clases
con un desbalance considerable: la categoria Healthy concentrd 3 344 imdagenes (76.2 %), mientras que
Black Pod Rot presentd 943 (21.5 %) y Pod Borer tnicamente 103 (2.35 %), lo que representa una razon
aproximada de 32.5 veces entre la clase mayoritaria y la minoritaria. El andlisis geométrico realizado sobre
una muestra de 300 imagenes indicé que todas las capturas presentan una relacion de aspecto cercana a
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1.0, conresoluciones comprendidas entre 1080x1080 y 2160x2160 pixeles, lo que confirmala uniformidad
del formato de adquisicidn. Estas observaciones justificaron la utilizacion de una validacién cruzada
estratificada para conservar las proporciones por clase en cada fold, asi como la priorizacién de la métrica
F1 macro en la seleccion de checkpoints conel fin de mitigar el sesgo inducido por el desbalance de clases.
Asimismo, se optd por aplicar aumentos de datos moderados durante el entrenamiento, buscando mejorar
la capacidad de generalizacion del modelo sin comprometerla integridad de las sefiales visuales asociadas
alas lesiones (Figura 2).
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Figura 2. Gréfico de distribucién por clases

3.2. Desempeiio global de los modelos

El andlisis del desempefio global de los modelos evidencidé un rendimiento altamente competitivo entre las
tres arquitecturas evaluadas. El modelo Vision Transformer (ViT-B/16) alcanzd la mayor media de F1
macro, con un valor de 0.9697 y una desviacidn estdndar de 0.0114, junto con una exactitud promedio de
0.9788. En segundo lugar, se ubicd ResNet50, con una F1 macro media de 0.9683, seguida de EfficientNet-
B0, que obtuvo 0.9666. Las diferencias entre los tres modelos resultaron minimas, con una separaciéon
promedio de aproximadamente 0.3 puntos porcentuales entre el mejor y el de menor desempefio en la
métrica F1 macro. Este comportamiento estrechamente agrupado refleja la robustez de las arquitecturas y
confirma la efectividad del esquema de preprocesamiento y validacién adoptado en el estudio (Tabla 1).

Tabla 1. Resumen de métricas de evaluacion por modelo

Modelo Exa(_:. Desv. F1_ Desv. F1 Pre(_:. Desv. Reca_ll Desv.
Media Exac. Media Media Prec. Media Recall

EfficientNet-BO 0.9756 0.0045 0.9666 0.0128 0.9690 0.0102 0.9651 0.0205
ResNet50 0.9811 0.0036 0.9683 0.0155 0.9803 0.0118 0.9575 0.0233
ViT-B/16 0.9788 0.0064 0.9697 0.0114 0.9800 0.0087 0.9604 0.0171

3.3. Entrenamiento, validacion cruzada estratificada y consistencia inter-fold

La evolucién del F1 macro durante el proceso de entrenamiento y validacién mostré un patrén de
convergencia estable en los tres modelos, sin indicios de sobreajuste y con fluctuaciones minimas entre
folds. En las Figuras 3, 4 y 5 se observa la consistencia de las curvas de validacion correspondientes a
EfficientNet-B0O, ResNet50 y ViT-B/16, respectivamente, lo que confirma la estabilidad del proceso de
optimizacidn y la reproducibilidad de los resultados obtenidos.
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Figura 5. Evolucidn del F1 Macro (validacidn) por fold en modelo ViT-B/16

El andlisis de consistencia entre folds mostré una variabilidad baja en todas las configuraciones
experimentales, condesviaciones estandar de la métrica F1 macro cercanas a una centésima, lo que refleja
una alta estabilidad del proceso de entrenamiento y validacidn. Este comportamiento sugiere que las
decisiones adoptadas durante el preprocesamiento de las imagenes y el uso de la validacidn cruzada
estratificada aportaron robustez al procedimiento, evitando la influencia de un fold dominante que pudiera
sesgar los promedios globales. Los resultados detallados de cada arquitectura en los cinco folds se
presentan en la Tabla 2, donde se observa la consistencia de las métricas de exactitud, precisidon, recall y F1,
evidenciando un rendimiento equilibrado entre modelos y particiones.
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Asimismo, las curvas de entrenamiento y validacién mostraron una convergencia rdpida, alcanzando
estabilidad en menos de diez épocas. El uso del programador de tasa de aprendizaje (scheduler) favorecio
la estabilizacion de la pérdida en las etapas finales del entrenamiento, mientras que el criterio de parada
temprana contribuyd a prevenir el sobreajuste. En conjunto, estos resultados confirmanla reproducibilidad
del pipeline propuesto y la consistencia inter-fold de los modelos, lo que respalda la validez de las
conclusiones derivadas del andlisis comparativo.

Tabla 2. Métricas de validacion cruzada estratificada

Fold Modelo Exactitud F1 Precision Recall
1 ResNet50 0.9863 0.9862 0.9914 0.9814
1 EfficientNet-B0 0.9795 0.9799 0.9765 0.9834
1 ViT-B/16 0.9806 0.9807 0.9825 0.9789
2 ResNet50 0.9795 0.9539 0.9820 0.9299
2 EfficientNet-BO 0.9692 0.9614 0.9557 0.9676
2 ViT-B/16 0.9681 0.9610 0.9665 0.9560
3 ResNet50 0.9772 0.9538 0.9601 0.9479
3 EfficientNet-B0 0.9727 0.9488 0.9709 0.9305
3 ViT-B/16 0.9784 0.9543 0.9781 0.9343
4 ResNet50 0.9829 0.9829 0.9835 0.9823
4 EfficientNet-BO 0.9784 0.9645 0.9616 0.9675
4 ViT-B/16 0.9829 0.9754 0.9899 0.9619
5 ResNet50 0.9795 0.9645 0.9844 0.9463
5 EfficientNet-BO 0.9784 0.9783 0.9801 0.9765

3.4. Matrices de confusion y comportamiento por clase

Las matrices de confusidon agregadas por modelo, obtenidas a partir de la suma de los cinco folds, junto con
sus versiones normalizadas por fila, evidenciaron un comportamiento equilibrado entre clases, sin indicios
de patrones de confusidn sistemdticos dominantes. La normalizacidn por fila permitié analizar de manera
detallada el recall por clase, mostrando ligeras oscilaciones entre arquitecturas que resultan coherentes
con el rango estrecho de valores de F1 macro previamente reportado. Estas variaciones no modifican la
conclusidn general del estudio: los tres modelos presentan una capacidad consistente para discriminar
correctamente entre las categorias Black Pod Rot, Pod Borer y Healthy, manteniendo un desempefio
homogéneo en el conjunto de datos evaluado (Figura 6).
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Figura 6. Matrices de confusién por modelo
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3.5. Andlisis estadistico inferencial (ANOVA y post-hoc)

La comparacion estadistica del rendimiento medio entre las tres arquitecturas se realizé mediante un
andlisis de varianza de medidas repetidas (ANOVA-RM) aplicado sobre la métrica F1 macro, considerando
el fold como sujeto y el modelo como factor intra-sujeto. Los resultados no mostraron diferencias
estadisticamente significativas entre arquitecturas (F = 0.278, p = 0.7645), lo que sugiere un
comportamiento homogéneo en el rendimiento promedio de los modelos. Este hallazgo se corrobord
mediante pruebas post-hoc pareadas con correccidn de Bonferroni, en las que ninguno de los contrastes
por pares alcanzd significancia estadistica. En particular, la diferencia media de F1 macro entre ViT-B/16 y
EfficientNet-BO fue de aproximadamente +0.0031 con un intervalo de confianza del 95 % y p = 0.25,
mientras quela diferencia entre ViT-B/16 y ResNet50 fue de +0.0014, también no significativa. En conjunto,
estos resultados indican que, aunque ViT-B/16 presentd la media mads alta, las discrepancias observadas
fueron pequefias y estadisticamente atribuibles a la variabilidad del muestreo, confirmando la robustez de
las tres arquitecturas evaluadas (Tabla 3).

Tabla 3. Pruebas post-hoc por par de modelos

Modelos t p_raw
ResNet50 vs EfficientNet BO 0.297661326 0.780781239
ResNet50 vs ViT-B/16 -0.370845959 0.72955701
EfficientNet B0 vs ViT-B/16 -1.347132941 0.249193532

Implicaciones practicas

Los resultados obtenidos demuestran que las tres arquitecturas evaluadas ofrecen un desempefio
competitivo y estable para la clasificacion automatica de enfermedades del cacao, con valores de F1 macro
cercanosy sin diferencias estadisticamente significativas. Este hallazgo confirma que la eficacia del modelo
no depende estrictamente de la arquitectura empleada, sino de la coherencia del pipeline de
preprocesamiento, la validacidn estratificaday el control de sobreajuste. En consecuencia, la eleccién del
modelo de referencia puede guiarse por criterios operativos y contextuales de implementacion: Vision
Transformer (ViT-B/16), por su ligera ventaja media y capacidad para modelar relaciones espaciales
globales; ResNet50, por su madurez, amplio soporte en bibliotecas de produccién y comportamiento muy
cercano al primero; y EfficientNet-B0, cuando se prioriza la eficiencia computacional y la reduccién de la
huella de despliegue.

Estos resultados respaldan lo sefialado por Ray et al. (2025) y Deepa et al. (2025), quienes destacan que los
modelos de aprendizaje profundo aplicados al diagndstico agricola ofrecen altos niveles de precision
incluso conarquitecturas ligeras, siempre que se acompafien de estrategias de entrenamiento consistentes
y datos adecuadamente preprocesados. Asimismo, confirman la tendencia observada por Lebrini & Ayerdi
Gotor (2024) y Shafay et al. (2025), respecto a que la eficacia de la vision por computadora en el ambito
fitosanitario depende mads del rigor metodoldgico que de la complejidad del modelo en si.

Desde el punto de vista aplicado, los resultados contribuyen a llenar un vacio metodoldgico identificado en
la literatura reciente: la falta de comparaciones sistemdticas entre arquitecturas contemporaneas bajo
marcos estadisticos controlados. En este sentido, el estudio aporta evidencia reproducible que orienta la
seleccion de modelos segun el equilibrio entre precisidn, estabilidad y viabilidad de implementacién en
entornos agricolas de recursos limitados, una linea de investigacion destacada por Bono et al. (2026) en el
contexto de la agricultura inteligente. Finalmente, las mejoras futuras deberian enfocarse no tanto en el
reemplazo de arquitecturas, sino en optimizar estrategias complementarias como el rebalanceo de clases,
los aumentos de datos especificos por tipo de lesién y el ajuste adaptativo de umbrales de decisidn,
siguiendo las recomendaciones de Song et al. (2025) sobre la necesidad de integrar pipelines robustos que
maximicen la generalizacion en aplicaciones de visién por computadora agricola.
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CONCLUSIONES

El estudio demostrd que las arquitecturas de aprendizaje profundo evaluadas presentan un rendimiento
estadisticamente equivalente en la deteccién automatica de plagas y enfermedades del cacao, alcanzando
valores de F1 macro superiores al 0.96 y desviaciones estandar reducidas entre folds. Estos resultados
evidencian la robustez del pipeline de vision por computadora implementado y la eficacia de las estrategias
de preprocesamiento, validacion y regularizacion empleadas. La ausencia de diferencias significativas entre
modelos indica que la seleccion del enfoque puede guiarse por criterios operativos, considerando el balance
entre precision, eficiencia computacional y escalabilidad del despliegue. Asimismo, se confirma que la
estabilidad y generalizacidon del sistema dependen principalmente de la calidad del entrenamiento y del
manejo del desbalance de clases, mas que del tipo de arquitectura utilizada. En conjunto, los hallazgos
contribuyen al desarrollo de sistemas inteligentes reproducibles y escalables para el monitoreo
fitosanitario, fortaleciendo la integracidn de la inteligencia artificial en la agricultura de precision y su
aplicacion en contextos productivos reales.
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