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ABSTRACT 

This study analyzed the application of deep learning for automated phytosanitary detection in cacao using computer vision, 

comparing the performance of three architectures: ResNet50, EfficientNet-B0, and Vision Transformer (ViT-B/16). A 

reproducible pipeline was implemented, integrating image preprocessing, five-fold stratified cross-validation, and inferential 

statistical analysis using repeated-measures ANOVA. The dataset consisted of 4,390 RGB images of cacao fruits distributed 

across three imbalanced classes: Healthy, Black Pod Rot, and Pod Borer. All models were fully fine-tuned and trained using 

the AdamW optimizer, early stopping, and a dynamic learning rate scheduler. The results showed mean F1 -macro values 

above 0.96 across all architectures, with no statistically significant differences among models (F = 0.278, p = 0.7645). Training 

curves exhibited stable convergence and low inter-fold variability, with no evidence of overfitting. These findings indicate that 

system performance primarily depends on the quality of the experimental pipeline and class imbalance handling rather than 

on the specific architecture employed. 

Keywords: deep learning; automated diagnosis; classification models; plant health; artificial vision 

RESUMEN 

Este estudio analizo  la aplicacio n del aprendizaje profundo en la deteccio n fitosanitaria automatizada del cacao mediante 

visio n por computadora, comparando el desempen o de tres arquitecturas: ResNet50, EfficientNet-B0 y Vision Transformer 

(ViT-B/16). Se implemento  un pipeline reproducible que integro  preprocesamiento de ima genes, validacio n cruzada 

estratificada de cinco pliegues y ana lisis estadí stico inferencial mediante ANOVA de medidas repetidas. El conjunto de datos 

estuvo conformado por 4 390 ima genes RGB de frutos de cacao, distribuidas en tres clases desbalanceadas: Healthy, Black 

Pod Rot y Pod Borer. Todos los modelos fueron ajustados mediante fine-tuning completo y entrenados con el optimizador 

AdamW, parada temprana y programacio n dina mica de la tasa de aprendizaje. Los resultados mostraron valores medios de 

F1 macro superiores a 0.96 en las tres arquitecturas, sin diferencias estadí sticamente significativas entre modelos (F = 0.278, 

p = 0.7645). Las curvas de entrenamiento evidenciaron convergencia estable y baja variabilidad inter-fold, sin indicios de 

sobreajuste. Los hallazgos indican que el rendimiento depende principalmente de la calidad del pipeline experimental y del 

manejo del desbalance de clases, ma s que del tipo de arquitectura empleada. 

Palabras clave: aprendizaje profundo; diagno stico automatizado; modelos de clasificacio n; sanidad vegetal; visio n artificial  
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1. INTRODUCTION  

Cocoa (Theobroma cacao L.) is one of the most important agricultural crops worldwide, playing a key role 

in the economies of tropical countries and in generating income for millions of smallholder farmers (Charry 

et al., 2025; Vinci et al., 2024). Its fermented and dried beans constitute the essential raw material for the 

chocolate industry and various confectionery products (Paparella et al., 2025; Quintero et al., 2025). 

However, cocoa production faces serious threats from fungal diseases and pests that drastically reduce 

yields and compromise bean quality, affecting the global competitiveness of the value chain (Cilas & Bastide, 

2020; Delgado-Ospina et al., 2021; Zahlul Ikhsan et al., 2024). Among the most relevant pathologies are 

Black Pod Rot, caused by Phytophthora spp., and the Pod Borer, both responsible for significant economic 

losses in tropical production areas (Magfirah et al., 2025; Puig et al., 2022; Schmidt et al., 2023). 

Traditionally, the detection of these conditions has relied on visual inspections carried out by farmers or 

specialists, a subjective procedure that depends on individual experience and the morphological 

interpretation of symptoms (Miyittah et al., 2022; Polania Bello, 2023). This approach, in addition to being 

slow and costly, presents high variability in diagnostic accuracy, which delays the implementation of 

effective control measures and increases disease spread. Consequently, the agricultural industry demands 

more reliable, faster, and reproducible methods for the early identification of pests and diseases, enabling 

optimized management processes and improved crop productivity (Raj & Prahadeeswaran, 2025; Wu et al., 

2025). 

In this context, advances in computer vision and machine learning (ML) have opened new opportunities for 

automating diagnostic tasks in precision agriculture (Taha et al., 2025; Waqas et al., 2025). These 

technologies enable the analysis of large volumes of visual data through algorithms capable of recognizing 

complex patterns in images of leaves, fruits, or stems (Injante et al., 2025; Lebrini & Ayerdi Gotor, 2024). 

Artificial vision systems (AVS), by combining optical hardware and digital image processing software, have 

become non-destructive, fast, and cost-effective tools for the characterization and classification of 

agricultural products, achieving accuracy levels comparable to or even exceeding those obtained by human 

experts (Anjali et al., 2024; Song et al., 2025). 

Deep learning (DL), as an evolution of ML, has revolutionized the field of computer vision by introducing 

models capable of learning hierarchical representations directly from data (Ray et al., 2025; Villalobos-

Culqui et al., 2025). These approaches allow the automatic extraction of relevant image features, 

eliminating the need for manual feature engineering and increasing generalization capability in complex 

tasks (Mall et al., 2023). Owing to their multi-level architecture, DL models have demonstrated outstanding 

performance in the detection, segmentation, and classification of visual patterns, consolidating themselves 

as the dominant paradigm in applications such as agricultural diagnostics, quality control, and automated 

crop monitoring (Deepa et al., 2025; Shafay et al., 2025). 

Nevertheless, the current literature reveals important limitations. Most studies focus on a single 

architecture or evaluate models without applying statistical methods that allow performance comparison 

with inferential significance. This lack of rigorous comparative analysis prevents a clear identification of 

which architectures are more stable, accurate, and efficient in agricultural contexts with limited 

computational resources. Furthermore, many experiments lack cross-validation schemes or reproducible 

protocols, hindering result replicability and practical adoption. 

To address this gap, there is a need for systematic evaluations that compare contemporary deep learning 

approaches under a controlled experimental framework. These models involve different trade-offs between 

accuracy, complexity, and computational efficiency, making it essential to analyze their performance in 

automated classification tasks of agricultural pests and diseases. Comparative evaluation enables the 

establishment of technical guidelines for their implementation in intelligent monitoring systems and 



Navarro-Cabrera et al.  

3                                                                              Rev. Cient. Sist. Inform. 6(1): e1385; (Jan-Jun, 2026). e-ISSN: 2709-992X 

automated phytosanitary diagnostics, promoting solutions that combine high performance, stability, and 

operational feasibility in real production environments (Bono et al., 2026). 

In this study, a computer vision approach driven by deep learning (Deep Learning–Driven Computer Vision) 

is proposed for the early and automatic detection of pests and diseases in cocoa fruits. A reproducible 

methodological process was implemented, integrating preprocessing strategies, stratified cross-validation, 

and statistical analysis to compare the performance of different deep learning models. The objective is to 

identify visual patterns associated with distinct phytosanitary conditions and to evaluate model stability 

and accuracy in automated classification scenarios. This work aims to provide technical and practical 

evidence for the development of intelligent agricultural diagnostic systems, promoting sustainability and 

efficiency in global cocoa production. 

2. MATERIALS AND METHODS 

The experimental development was structured as a reproducible computer vision pipeline designed for the 

automatic classification of diseases in cocoa fruits. The process comprised the following stages: (1) 

exploratory data analysis (EDA), (2) preprocessing, (3) training with stratified cross-validation, (4) 

evaluation using classification metrics, and (5) inferential statistical analysis to contrast model 

performance. Figure 1 presents the methodological framework, which ensures result traceability and 

comparability across configurations, enabling the replication of the study in different production contexts 

or with new datasets. 

 
Figure 1. Proposed methodological framework 

Dataset and Initial Preparation 

The image dataset named “Cacao Diseases” was used, obtained from Kaggle (class-based folder structure). 

It consists of 4,390 RGB images of cacao fruits labeled into three categories: Black Pod Rot (943), Pod Borer 

(103), and Healthy (3,344). The images were organized using the ImageFolder structure (one folder per 

class) for direct consumption by PyTorch. Prior to training, a basic exploratory data analysis (EDA) was 

conducted: first, class counts were computed to identify imbalance; second, image size sampling was 

performed to estimate resolution variability; and finally, a visual mosaic of sample images per class was 

generated. Any corrupted or unreadable images were discarded. 
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Experimental Design and Data Partitioning 

To obtain robust estimates and enable statistical comparison among architectures, five-fold stratified cross-

validation was applied, ensuring the same class distribution in each fold. In every fold, each of the three 

models was trained and validated on identical data partitions, which subsequently allowed the fold to be 

treated as a “subject” in the repeated-measures analysis. A global random seed (42) was set to ensure 

reproducibility. 

Preprocessing and Data Augmentation 

In order to preserve chromatic signals relevant to symptoms such as lesions, mycelium, or discoloration, 

moderate data augmentation parameters were applied along with standard ImageNet normalization 

Training:  
train_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.RandomResizedCrop(img_size, scale=(0.8, 1.0)), 

      transforms.RandomHorizontalFlip(), 

      transforms.RandomRotation(10), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

]) 

Validation:  
eval_tf = transforms.Compose([ 

      transforms.Resize(int(img_size*1.15)), 

      transforms.CenterCrop(img_size), 

      transforms.ToTensor(), 

      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), 

    ]) 

The input size was fixed at 224×224 pixels to ensure compatibility with the ImageNet standard and improve 

computational efficiency. Data augmentation transformations were kept conservative to avoid distorting 

fine lesion features. 

Evaluated Models 

Three deep learning architectures widely used in recent studies on agro-phytopathological image 

classification were evaluated: ResNet50 (He et al., 2015), EfficientNet-B0 (Tan & Le, 2020) and Vision 

Transformer (ViT-B/16) (Wang et al., 2025). All networks were pretrained on the ImageNet-1K dataset to 

leverage general visual representations learned from millions of natural images. Subsequently, the output 

layers were reconfigured to adapt the models to the specific problem domain. For ResNet50, the final layer 

was replaced with a fully connected layer containing three neurons corresponding to the target classes. In 

EfficientNet-B0, the last classifier layer was substituted with a three-class output, while in ViT-B/16, the 

original classification head was replaced by a linear layer with the same output dimensionality. 

For all three models, full fine-tuning of parameters was performed rather than freezing the pretrained 

convolutional or attention layers. This methodological choice was motivated by the substantial difference 

between the source domain represented by ImageNet—based on natural objects and general scenes—and 

the target domain of this study, which focuses on images of cacao fruits affected by diseases and pests. Full 

weight adaptation allows the architectures to learn more discriminative representations specific to the 

phytopathological context, optimizing model sensitivity to subtle visual patterns and textures associated 

with different fruit health conditions. 
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Training Configuration 

Model training was implemented using the PyTorch framework, applying a uniform set of hyperparameters 

to ensure comparability across architectures. The AdamW optimizer (Kingma & Ba, 2014) was used with 

an initial learning rate of 1×10⁻⁴ and a weight decay parameter of 1×10⁻⁴, settings that balance gradient 

stability and model regularization during learning. The selected loss function was Cross-Entropy Loss, 

which is suitable for multiclass classification problems. The batch size was set to 32 images per iteration, 

and training was conducted for a maximum of 10 epochs per fold within the stratified cross-validation 

scheme. 

To dynamically adjust the learning rate, a ReduceLROnPlateau scheduler was incorporated, reducing the 

learning rate by 50% when the validation loss failed to show significant improvement. In addition, an early 

stopping mechanism with a patience of three epochs was implemented, selecting as the optimal checkpoint 

the model corresponding to the highest macro F1 score achieved on the validation set. This combination of 

strategies helped control overfitting, stabilize convergence, and optimize computational resource usage, 

making the approach suitable for both hardware-constrained environments and edge inference scenarios. 

Per-Fold Evaluation Protocol 

At the end of each epoch, the model was evaluated on the corresponding fold’s validation set, and once the 

early stopping criterion was triggered, the best model state was loaded to compute the final metrics for that 

fold: accuracy, macro F1 score, macro precision, and macro recall, as well as a per-class classification report 

(precision/recall/F1) and the confusion matrix. 

Confusion matrices for each fold were stored and later aggregated per model in two ways: by summing 

absolute counts and by applying a row-normalized version (per-class recall). This approach enabled the 

analysis of systematic confusion patterns among classes without allowing a single fold to dominate the 

interpretation. 

Statistical Comparison Between Models 

To compare the mean performance of the three architectures, a repeated-measures statistical design was 

applied, considering the five folds generated during cross-validation. First, a long-format table was 

constructed including the fold (treated as the subject), the model (considered a within-subject factor with 

three levels), and the response metric, macro F1. Subsequently, a repeated-measures analysis of variance 

(RM-ANOVA) was performed, using the model as the within-subject effect and the fold as the observational 

unit, with a significance level set at α = 0.05. 

When statistical significance was detected, a post hoc analysis was conducted using paired t-tests between 

each pair of models, applying the Bonferroni correction to control the cumulative Type I error. This 

approach enabled a robust assessment of architecture-related differences while controlling for variability 

introduced by validation splits and avoiding conclusions dependent on a single train–validation partition. 

3. RESULTS AND DISCUSSION 

3.1. Exploratory data analysis (EDA) 

After the initial exploration of the dataset, a total of 4,390 images were identified, distributed across three 

classes with a considerable imbalance. The Healthy category accounted for 3,344 images (76.2%), while 

Black Pod Rot included 943 images (21.5%), and Pod Borer only 103 images (2.35%), representing an 

approximate ratio of 32.5 between the majority and minority classes. A geometric analysis conducted on a 

sample of 300 images indicated that all captures exhibit an aspect ratio close to 1.0, with resolutions 

ranging from 1080×1080 to 2160×2160 pixels, confirming the uniformity of the acquisition format. These 

observations justified the use of stratified cross-validation to preserve class proportions within each fold, 

as well as the prioritization of the macro F1-score for checkpoint selection in order to mitigate bias induced 
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by class imbalance. Additionally, moderate data augmentation techniques were applied during training to 

enhance the model’s generalization capability without compromising the integrity of visual cues associated 

with lesion patterns (Figure 2). 

 
Figure 2. Distribution chart by classes 

3.2. Overall performance of the models 

The analysis of the models’ overall performance revealed highly competitive results among the three 

evaluated architectures. The Vision Transformer (ViT-B/16) achieved the highest mean macro F1-score, 

with a value of 0.9697 and a standard deviation of 0.0114, along with an average accuracy of 0.9788. 

ResNet50 ranked second, with a mean macro F1-score of 0.9683, followed by EfficientNet-B0, which 

obtained 0.9666. The differences among the three models were minimal, with an average separation of 

approximately 0.3 percentage points between the best- and lowest-performing models in terms of the 

macro F1-score. This tightly clustered behavior reflects the robustness of the evaluated architectures and 

confirms the effectiveness of the preprocessing and validation scheme adopted in the study (Table 1). 

Table 1. Summary of evaluation metrics by model  

Model 
Mean 

accuracy 
Accuracy 

SD 
Mean F1 SD F1 

Mean 
Precision 

Precision 
SD 

Mean 
Recall 

Recall 
SD 

EfficientNet-B0 0.9756 0.0045 0.9666 0.0128 0.9690 0.0102 0.9651 0.0205 

ResNet50 0.9811 0.0036 0.9683 0.0155 0.9803 0.0118 0.9575 0.0233 

ViT-B/16 0.9788 0.0064 0.9697 0.0114 0.9800 0.0087 0.9604 0.0171 

3.3. Training, stratified cross-validation, and inter-fold consistency 

The evolution of the F1 macro during the training and validation process showed a stable convergence 

pattern in all three models, with no signs of overfitting and minimal fluctuations between folds. Figures 3, 

4, and 5 show the consistency of the validation curves corresponding to EfficientNet-B0, ResNet50, and ViT-

B/16, respectively, confirming the stability of the optimization process and the reproducibility of the results 

obtained. 
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Figure 3. Evolution of the F1 Macro (validation) by fold in the EfficientNetB0 model  

 
Figure 4. Evolution of the F1 Macro (validation) by fold in the ResNet50 model  

 
Figure 5. Evolution of the F1 Macro (validation) by fold in the ViT-B/16 model 

The analysis of inter-fold consistency showed low variability across all experimental configurations, with 

standard deviations of the macro F1-score close to one hundredth, reflecting high stability in the training 

and validation process. This behavior suggests that the decisions adopted during image preprocessing and 

the use of stratified cross-validation contributed to the robustness of the procedure, preventing the 

influence of a dominant fold that could bias the overall averages. The detailed results for each architecture 

across the five folds are presented in Table 2, where the consistency of accuracy, precision, recall, and F1 

metrics can be observed, evidencing balanced performance across models and data partitions. 
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Furthermore, the training and validation curves exhibited rapid convergence, reaching stability in fewer 

than ten epochs. The use of a learning rate scheduler facilitated loss stabilization during the final stages of 

training, while the early stopping criterion helped prevent overfitting. Taken together, these results confirm 

the reproducibility of the proposed pipeline and the inter-fold consistency of the models, supporting the 

validity of the conclusions derived from the comparative analysis. 

Table 2. Stratified cross-validation metrics 

Fold Model Accuracy F1 Precision Recall 

1 ResNet50 0.9863 0.9862 0.9914 0.9814 
1 EfficientNet-B0 0.9795 0.9799 0.9765 0.9834 
1 ViT-B/16 0.9806 0.9807 0.9825 0.9789 
2 ResNet50 0.9795 0.9539 0.9820 0.9299 

2 EfficientNet-B0 0.9692 0.9614 0.9557 0.9676 
2 ViT-B/16 0.9681 0.9610 0.9665 0.9560 
3 ResNet50 0.9772 0.9538 0.9601 0.9479 

3 EfficientNet-B0 0.9727 0.9488 0.9709 0.9305 
3 ViT-B/16 0.9784 0.9543 0.9781 0.9343 
4 ResNet50 0.9829 0.9829 0.9835 0.9823 
4 EfficientNet-B0 0.9784 0.9645 0.9616 0.9675 

4 ViT-B/16 0.9829 0.9754 0.9899 0.9619 
5 ResNet50 0.9795 0.9645 0.9844 0.9463 
5 EfficientNet-B0 0.9784 0.9783 0.9801 0.9765 

3.4. Confusion matrices and behavior by class 

The aggregated confusion matrices for each model, obtained from the sum of the five folds, along with their 

row-normalized versions, showed balanced behavior across classes, with no indication of dominant 

systematic confounding patterns. Row normalization allowed for a detailed analysis of recall by class, 

revealing slight variations between architectures that are consistent with the previously reported narrow 

range of macro F1 values. These variations do not alter the overall conclusion of the study: all three models 

consistently discriminate correctly between the Black Pod Rot, Pod Borer, and Healthy categories, 

maintaining homogeneous performance across the evaluated dataset (Figure 6). 

 
Figure 6. Confusion matrices by model 
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3.5 Inferential statistical analysis (ANOVA and post-hoc) 

Statistical comparison of mean performance among the three architectures was performed using a repeated 

measures analysis of variance (RM-ANOVA) applied to the macro F1 metric, considering the fold as the 

subject and the model as the within-subject factor. The results showed no statistically significant differences 

between architectures (F = 0.278, p = 0.7645), suggesting homogeneous behavior in the average 

performance of the models. This finding was corroborated by paired post-hoc tests with Bonferroni 

correction, in which none of the pairwise comparisons reached statistical significance. In particular, the 

mean macro F1 difference between ViT-B/16 and EfficientNet-B0 was approximately +0.0031 with a 95% 

confidence interval and p ≈ 0.25, while the difference between ViT-B/16 and ResNet50 was +0.0014, also 

not significant. Taken together, these results indicate that, although ViT-B/16 had the highest mean, the 

observed discrepancies were small and statistically attributable to sampling variability, confirming the 

robustness of the three architectures evaluated (Table 3). 

Table 3. Post-hoc tests by pair of models 

Models t p_raw 

ResNet50 vs EfficientNet B0 0.297661326 0.780781239 
ResNet50 vs ViT-B/16 -0.370845959 0.72955701 

EfficientNet B0 vs ViT-B/16 -1.347132941 0.249193532 

Practical Implications 

The results obtained demonstrate that the three architectures evaluated offer competitive and stable 

performance for the automatic classification of cacao diseases, with similar macro F1 values and no 

statistically significant differences. This finding confirms that the model's effectiveness does not depend 

strictly on the architecture used, but rather on the coherence of the preprocessing pipeline, stratified 

validation, and overfit control. Consequently, the choice of reference model can be guided by operational 

and contextual implementation criteria: Vision Transformer (ViT-B/16), due to its slight average advantage 

and ability to model global spatial relationships; ResNet50, due to its maturity, broad support in production 

libraries, and behavior very similar to the former; and EfficientNet-B0, when computational efficiency and 

reducing the deployment footprint are prioritized. 

These results support the findings of Ray et al. (2025) and Deepa et al. (2025), who highlight that deep 

learning models applied to agricultural diagnostics offer high levels of accuracy even with lightweight 

architectures, provided they are accompanied by consistent training strategies and adequately 

preprocessed data. They also confirm the trend observed by Lebrini & Ayerdi Gotor (2024) and Shafay et 

al. (2025), regarding the fact that the effectiveness of computer vision in the field of plant health depends 

more on methodological rigor than on the complexity of the model itself. 

From an applied perspective, the results help fill a methodological gap identified in recent literature: the 

lack of systematic comparisons between contemporary architectures under controlled statistical 

frameworks. In this sense, the study provides reproducible evidence that guides the selection of models 

based on the balance between accuracy, stability, and feasibility of implementation in resource-constrained 

agricultural environments, a line of research highlighted by Bono et al. (2026) in the context of smart 

agriculture. Finally, future improvements should focus not so much on replacing architectures, but on 

optimizing complementary strategies such as class rebalancing, augmenting lesion-specific data, and 

adaptive adjustment of decision thresholds, following the recommendations of Song et al. (2025) on the 

need to integrate robust pipelines that maximize generalization in agricultural computer vision 

applications. 
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CONCLUSIONS 

This study demonstrated that the evaluated deep learning architectures exhibit statistically equivalent 

performance in the automated detection of cacao pests and diseases, achieving macro F1 values above 0.96 

with low standard deviations across folds. These results highlight the robustness of the implemented 

computer vision pipeline and the effectiveness of the preprocessing, validation, and regularization 

strategies employed. The absence of significant differences among models indicates that approach selection 

can be guided by operational criteria, considering the balance between accuracy, computational efficiency, 

and deployment scalability. Moreover, the findings confirm that system stability and generalization depend 

primarily on training quality and class imbalance handling rather than on the specific architecture used. 

Overall, these results contribute to the development of reproducible and scalable intelligent systems for 

phytosanitary monitoring, strengthening the integration of artificial intelligence into precision agriculture 

and its application in real-world production contexts.  
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