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ABSTRACT 

Academic performance is a key indicator for evaluating educational quality and identifying areas for 

improvement in teaching and learning processes. This study analyzes a dataset of first-year lower secondary 

students from an educational institution in the province of Salta, Argentina, with the aim of identifying variables 

that influence student performance and supporting decision-making to mitigate low academic achievement. 

Following the CRISP-DM methodology, an exploratory analysis was conducted to identify relevant patterns in 

grades, unsupervised learning models were applied to detect student profiles, and supervised models were used 

to predict year completion based on second-term grades. The best-performing model achieved an F1-score of 

0.80 for the minority class and an overall accuracy of 89%. The results enable early identification of students at 

academic risk and the segmentation of student profiles, providing valuable insights for more effective 

pedagogical interventions. 
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RESUMEN 

El rendimiento acade mico es un indicador clave para evaluar la calidad educativa y detectar a reas de mejora en 

los procesos de ensen anza y aprendizaje. En este trabajo se analizo  un conjunto de datos de estudiantes de primer 

an o del ciclo ba sico de una institucio n secundaria de la provincia de Salta, Argentina, con el objetivo de identificar 

variables que influyen en el desempen o estudiantil y apoyar la toma de decisiones orientadas a reducir el bajo 

rendimiento acade mico. Siguiendo la metodologí a CRISP-DM, se realizo  un ana lisis exploratorio para identificar 

patrones relevantes en las calificaciones, se aplicaron modelos de aprendizaje no supervisado para detectar 

perfiles de estudiantes y, finalmente, modelos supervisados para predecir la aprobacio n del an o a partir de las 

calificaciones del segundo trimestre. El mejor modelo alcanzo  un F1-Score de 0,80 en la clase minoritaria y un 

accuracy del 89%. Los resultados permiten anticipar situaciones de riesgo acade mico y segmentar perfiles 

estudiantiles, aportando informacio n u til para intervenciones pedago gicas ma s efectivas. 

Palabras clave: aprendizaje automa tico; ciencia de datos; educacio n secundaria; python 
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1. INTRODUCTION  

The analysis of academic performance is currently one of the fundamental issues and a major 

concern that educational institutions must address. Over time, it has been studied from two main 

perspectives: data related to the school as an educational system and the characteristics that 

students exhibit based on their social context. However, it has not yet been possible to fully identify 

and understand the variables that influence academic performance. 

In the last decade, research on academic performance and student dropout has grown significantly 

in Argentina. Most of these studies have focused on higher education, without providing, to date, 

an integrative analysis that allows for general conclusions about the state of knowledge in the field. 

A large part of the academic production on this issue has addressed academic performance 

indirectly by studying variables associated with both dropout and student achievement, but 

without offering a comprehensive view that integrates both aspects (Garcí a, 2014). 

Nevertheless, much of this research has concentrated on higher education, leaving secondary 

education less explored. It is therefore necessary to also understand the specific dynamics of 

secondary education, especially in regional contexts such as Salta, where socioeconomic and 

school conditions pose significant challenges. 

In this context, Data Mining (Ibarra, 2020) emerges as a promising tool for analyzing academic 

performance with the aim of addressing various problems, such as student achievement, dropout, 

and attrition. In recent years, Educational Data Mining (EDM) has shown a growing impact on the 

analysis of academic performance and the identification of at-risk students, according to a recent 

review (Romero & Ventura, 2020). EDM has become a useful tool for discovering relevant patterns 

from educational data. 

An example of this is the study conducted at the Universidad Te cnica de Manabí  (Saltos-Mero & 

Cruz-Felipe, 2024), where the CRISP-DM methodology was applied to analyze the academic 

performance of students in the “Gastronomy and Tourism” and “Economics” degree programs, 

using supervised learning methods such as Decision Trees, Random Forests, Neural Networks, and 

Support Vector Machines (SVM). The models were implemented in Python, and after a comparative 

evaluation process, the Random Forest–based model was found to deliver the best performance, 

achieving accuracy values of 83% and 86%, respectively. 

Similarly, Guanin-Fajardo et al. (2024) applied the CRISP-DM methodology to predict the academic 

performance of university students using a dataset of 6.690 records with academic and 

socioeconomic variables. Among the evaluated methods, XGBoost achieved the best results, 

reaching an AUC value of 87.75%, demonstrating high predictive capability. In addition, the model 

enabled the extraction of interpretable rules from decision trees, facilitating practical application. 

The study highlights the importance of implementing early predictive models to strengthen 

student retention strategies. The methodology is replicable in other academic contexts and 

demonstrates the value of combining accuracy with interpretability. 

Finally, Bellaj et al., 2024 developed supervised learning models to predict academic performance 

based on techniques such as SVM, Random Forests, XGBoost, K-NN, and Naí ve Bayes. The best-

performing model was XGBoost, followed by an Ensemble Voting Classifier (EVC). The authors 

emphasize the importance of hyperparameter optimization to improve the accuracy of predictive 

models. They also note that variables such as prior academic performance, interaction with virtual 
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platforms, and sociodemographic factors significantly influence predictions. This work 

contributes to the development of early warning systems in higher education. 

The purpose of this study is to identify trends and patterns in academic performance through 

Exploratory Data Analysis (EDA) (Tukey, 1977) as well as to predict student performance using 

supervised learning models based on techniques such as Random Forests (Breiman, 2001), 

XGBoost (Chen & Guestrin, 2016), and Extreme Learning Machine (Huang et al., 2006; Wang et al., 

2022). In addition, unsupervised learning models based on K-Means (MacQueen, 1967) and BIRCH 

(Zhang et al., 1996) were used to identify groups of students with similar characteristics, 

facilitating corrective measures and segmentation for timely interventions. 

2. MATERIALS AND METHODS 

2.1. Case Study 

The present study was conducted at the Technical Secondary School No. 3100 “Repu blica de la 

India”, located in the province of Salta, Argentina. The research followed a descriptive and 

correlational approach, with a non-experimental design. 

2.2. Dataset 

The study was based on a dataset corresponding to the entire population of first-year students in 

the basic cycle of the institution. The dataset included 787 student records covering 13 subjects 

(Art, Biological Sciences, Spanish Language I, History I, Technology I, Technical Drawing, Physical 

Chemistry, Foreign Language I, Ethics and Citizenship I, Geography I, Mathematics I, Preparatory 

Workshop I, and Physical Education). The records span the academic years 2017, 2018, 2019, 

2022, and 2023. 

Table 1 presents the attributes related to the institution’s academic records, which were 

considered for analyzing academic performance and detecting patterns in student grades. The 

data were obtained from official institutional sources and constituted the primary data collection 

instrument. Each record was associated with a student through their first name, last name, and a 

unique identifier. 

Table 1. Dataset Attributes 

Attribute Type Description 

Class Categorical 
Student’s grade level and class group (e.g., 1st A, 1st B, 

etc.) 
Shift Categorical Morning shift (TM) or afternoon shift (TT) 

Gender Categorical Male (M) or Female (F) 
Academic Year Numerical Academic year (2017–2019, 2022–2023) 
Subject Grades Numerical (Integer) Quarterly grades obtained in 13 subjects. Range: 1–10 

Final Status Categorical 
Indicates whether the student was promoted to the next 
academic year (possible values: Promoted or Repeating) 

Each subject is disaggregated into three separate columns corresponding to the three terms of the 

academic year, identified by the suffixes “_1t”, “_2t”, and “_3t” (e.g., Mathematics_1t, 

Mathematics_2t, etc.). 

Appendix A1 describes the dataset related to second-year basic cycle students.  

2.3. Methodology 
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The CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was adopted as 

the methodological framework for this study (Chapman, 2000), due to its structured and flexible 

nature for Data Mining projects. This approach proposes a cyclical process composed of different 

phases that enable the transformation of domain-specific objectives into analytical models with 

practical value for decision-making. 

First, the business understanding phase made it possible to define the research problem and 

establish as the main objective the analysis of students’ academic performance, with the aim of 

identifying relevant patterns in their grades. Based on these objectives, the study proceeded to the 

data understanding phase, in which the available records were collected and an initial exploration 

was conducted to describe their general characteristics, assess data quality, and detect potential 

inconsistencies, missing values, or outliers. 

Subsequently, during the data preparation phase, the final dataset to be used in the analysis was 

constructed through the selection of relevant attributes and the application of data cleaning and 

transformation processes, ensuring its suitability for modeling. In the modeling phase, analytical 

techniques aimed at both the description and prediction of academic performance were applied, 

selecting and tuning the most appropriate algorithms according to the defined objectives. 

Finally, the evaluation phase allowed for the analysis of the performance and usefulness of the 

obtained models, verifying their consistency with the established objectives and their contribution 

as decision-support tools in the educational context. In this way, CRISP-DM provided a 

comprehensive methodological framework that systematically guided the development of the 

study and the generation of relevant knowledge. 

Data processing, visualization, and analysis tasks, as well as the development of machine learning 

models, were carried out using Python scripts and libraries such as Pandas, NumPy, Scikit-Learn, 

and Matplotlib. This approach enabled a sequential and CRISP-DM–guided structure for the study. 

2.4. Exploratory Data Analysis 

This study relied on a set of fundamental techniques for data analysis. First, data cleaning and 

transformation tasks were performed in order to prepare the information for subsequent analysis, 

ensuring its consistency and suitability for the study context. 

Subsequently, Exploratory Data Analysis (EDA) provided an initial approach to the structure and 

quality of the records, enabling the detection of irregularities and a general understanding of the 

behavior of the dataset variables. 

EDA constitutes a cross-cutting stage prior to the implementation of unsupervised and supervised 

learning pipelines, and its objective is to understand the data structure, detect outliers, and guide 

preprocessing and modeling decisions. 

2.5. Unsupervised Learning 
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Figure 1. Proposed Unsupervised Learning Pipeline 

Unsupervised learning (Ghahramani, 2003) was employed to identify patterns and group 

observations with similar characteristics through the development of models based on techniques 

such as K-Means and BIRCH. In addition, Principal Component Analysis (PCA) (Yang et al., 2018) 

was used as a dimensionality reduction technique. 

The complete unsupervised learning pipeline is presented in Figure 1, sequentially illustrating the 

stages of the process from data extraction to cluster evaluation. As shown in the figure, the process 

begins with data extraction and preprocessing, followed by dimensionality reduction for 

clustering and visualization, determination of the optimal number of clusters using the Elbow 

method, application of clustering techniques, and evaluation of the resulting clusters. 

2.5.1. Objective of Unsupervised Learning 

At this stage of the study, an analysis was conducted with the objective of identifying groups of 

students with similar characteristics in their academic performance. The analysis aims to generate 

valuable knowledge for early pedagogical decision-making, enabling the implementation of 

corrective actions based on second-term grades before the end of the academic year. 

2.5.2. Dataset and Variables Used 

For this analysis, a set of 13 attributes corresponding to the numerical grades obtained by first-

year basic cycle students in different subjects during the second term was used, considering the 

academic years 2017, 2018, 2019, 2022, and 2023. The attributes considered were: Art_2t, 

Biological Sciences_2t, Spanish Language I_2t, History I_2t, Technology I_2t, Technical Drawing_2t, 

Physical Chemistry_2t, Foreign Language I_2t, Ethics and Citizenship I_2t, Geography I_2t, 

Mathematics I_2t, Preparatory Workshop I_2t, and Physical Education_2t. 

2.5.3. Data Preprocessing 

A data preprocessing adjustment was performed, consisting of data standardization and the 

application of PCA. 
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Standardization was applied in order to mitigate the impact of extreme values, preventing 

attributes with larger scales from dominating the clustering process, without removing real 

observations from the dataset. Subsequently, PCA was applied to the standardized data so that all 

attributes had equal importance in the projection. The first five principal components, which 

explain 71% of the data variability (PC1 = 0.448; PC2 = 0.079; PC3 = 0.065; PC4 = 0.061; PC5 = 

0.050), were selected, and the first two were used for visualization in a two-dimensional space. 

This approach allowed a concise handling of the information contained in the 13 original attributes 

and facilitated both the visualization and graphical interpretation of the resulting clusters. 

2.5.4. Selection of the Number of Clusters 

To determine the optimal number of clusters, the Elbow method was applied (Thorndike, 1953; 

Syakur et al., 2018). As shown in Figure 2, the curve exhibits a pronounced decrease in inertia 

(WCSS) up to 𝑘 = 3, after which the slope becomes less steep, indicating an inflection point. Based 

on this criterion, 𝑘 = 3 was selected as the appropriate number of clusters. 

 
Figure 2. Application of the Elbow Method to the Dataset 

2.5.5. Data Clustering 

Unsupervised learning models based on the K-Means and BIRCH techniques were developed, 

allowing the comparison of different methodological approaches. Both techniques were selected 

due to their conceptual differences in the clustering process. K-Means is a partition-based 

clustering technique widely used for numerical and standardized datasets, which produces 

compact and well-defined clusters. In contrast, BIRCH is a hierarchical clustering technique that 

can capture more flexible data structures, making it suitable for contrasting the results obtained 

with K-Means. The comparison between both models made it possible to assess the stability and 

coherence of the groupings under different methodological assumptions. 

Table 2 shows the selected configuration for both models. 

Table 2. Configuration of Unsupervised Models 
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Model Parameters 

K-Means 

n_clusters = 3 
max_iter = 300 
n_init = 10 
random_state = 0 

BIRCH 
n_clusters = 3 
threshold = 0.05; 0.1; 0.2; 0.3; 0.4 
branching_factor = 3; 5; 10; 15; 20; 30 

2.5.6. Evaluation and Interpretation 

The performance of the unsupervised models was assessed using three specific clustering 

evaluation metrics: the Calinski–Harabasz index (Calinski & Harabasz, 1974), the Silhouette 

coefficient (Rousseeuw, 1987), and the Davies–Bouldin index (Ros et al., 2023). The Calinski–

Harabasz index measures the ratio between inter-cluster dispersion and intra-cluster dispersion, 

where higher values indicate better clustering quality. In contrast, the Silhouette coefficient 

evaluates the internal cohesion of clusters and their separation from other groups, with values 

close to 1 indicating a well-defined clustering structure. Finally, the Davies–Bouldin index analyzes 

the relationship between the internal dispersion of each cluster and the distance to the nearest 

cluster, where lower values represent more compact and better-separated partitions. As a general 

rule, values close to 0 represent very compact and well-separated clusters, values between 1 and 

2 indicate moderate cohesion and separation, and values greater than 2 reflect poorly defined 

clusters or significant overlap. 

The methodological procedure developed made it possible to apply unsupervised learning 

techniques for the identification of patterns in academic performance. The results derived from 

this analysis are presented in Section 3. 

2.6. Supervised Learning 

 
Figure 3. Proposed Supervised Learning Pipeline 
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Supervised learning techniques such as Random Forests, XGBoost, and Extreme Learning Machine 

were employed for the development of predictive models (Plathottam et al., 2023). The complete 

supervised learning pipeline is presented in Figure 3, where the stages of the process are described 

sequentially. 

As shown in the figure, the process begins with data extraction and initial preprocessing. 

Subsequently, feature extraction and selection are performed, followed by class balancing. Next, 

the modeling stage is carried out using the selected supervised learning techniques, and finally, 

model performance is evaluated using appropriate metrics, providing objective criteria to assess 

their effectiveness and consistency with the defined objectives. 

2.6.1. Objective of Supervised Learning 

The objective of this stage is to predict whether a student will be promoted to the next academic 

year using supervised learning models. To this end, predictive models based on Random Forests 

(RF), XGBoost, and Extreme Learning Machine (ELM) were developed and evaluated in order to 

identify students at risk at an early stage and support pedagogical decision-making. 

2.6.2. Selection of attributes or features 

For model construction, the attributes Gender, Academic Year, and the grades from the first and 

second terms corresponding to the academic years 2017, 2018, 2019, 2022, and 2023 for first-

year basic cycle students were initially considered. These attributes were previously standardized, 

as they represent a critical period for implementing interventions before the end of the academic 

year. 

The selected significant features correspond to second-term grades from six subjects: History I_2T, 

Spanish Language I_2T, Technical Drawing_2T, Technology I_2T, Mathematics I_2T, and Foreign 

Language I_2T, for the academic years 2017, 2018, 2019, 2022, and 2023. These features were 

selected using the Feature Importance technique (Breiman, 2001), obtained from a Random Forest 

model trained with 250 decision trees. Importance values were computed for all available 

attributes, and only the six second-term subjects with the highest contribution to academic 

performance prediction were retained. The selection focused on the second term, as it provides 

more recent information about student performance and enables predictive decision-making 

before the beginning of the third term. Figure 4 illustrates the application of this technique and the 

relative contribution of each attribute. 



 Zalasar et al. 

9                                                                               Rev. Cient. Sist. Inform. 6(1): e1212; (Jan-Jun, 2026). e-ISSN: 2709-992X 

 
Figure 4. Application of Feature Importance 

2.6.3. Class Balancing 

Given that the dataset exhibited a strong class imbalance, with a significant majority of promoted 

students compared to a smaller proportion of retained students, the Tomek Links technique was 

applied (Leng et al., 2024). This method identifies pairs of instances from different classes that are 

mutual nearest neighbors and removes those belonging to the majority class (in this case, 

promoted students). 

As a result, the majority class was reduced from 574 to 554 instances, while the minority class 

remained unchanged. This slight reduction helped mitigate class imbalance, promoting more 

balanced learning in the supervised models and contributing to improved predictive performance 

for the minority class, without removing critical information from the majority class. 

Data augmentation techniques were not employed, as only real academic data were used and 

generating synthetic observations was deemed inappropriate. The creation of synthetic data could 

introduce artificial grade values, potentially affecting both the pedagogical validity of the results 

and the reliability of the model predictions. 

2.6.4. Data Splitting (Train/Test Split) 

The data were split by allocating 75% of the dataset for training and 25% for testing the predictive 

models. 

2.6.5. Validation Strategy (Repeated K-Fold) 

In order to ensure robust validation and minimize the risk of overfitting, the Repeated K-Fold 

Cross-Validation technique was applied (Kohavi, 2001) with the following configuration: 

• n_splits: 10 (number of splits) 

• n_repeats: 10 (number of repetitions) 

• random_state: 42 (seed value to ensure reproducibility) 
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This technique was chosen over alternatives such as simple K-Fold or Stratified K-Fold because it 

provides a more stable estimation of model performance by reducing metric variability across 

different dataset partitions. Each observation participates in multiple training and validation sets, 

ensuring a more comprehensive analysis of model behavior across the entire dataset and 

improving the reliability of hyperparameter selection and the reported final performance. The 

Repeated K-Fold configuration is suitable for a dataset with fewer than 1000 samples, balancing 

the stability of supervised model performance metrics and the computational cost of model 

training. 

2.6.6. Hyperparameter Optimization 

In order to obtain the best possible models, hyperparameter optimization techniques were 

employed to improve performance and adaptability. Specifically, Grid Search (Belete & Huchaiah, 

2022; Ogunsanya et al. 2023), Randomized Search (Breiman, 2001) and BayesSearch (Snoek et al., 

2012) were used, as these approaches offer different strategies for exploring the configuration 

space and selecting those that maximize model quality. 

Table 3 presents the specific values tested for each hyperparameter. 

Table 3. Techniques and Hyperparameter Values (Martí nez et al., 2025) 

ML Model Technique Hyperparameters Values 

ELM Grid Search 

Number of neurons in hidden layers 1000; 2000; 3000; 4000; 5000; 
6000; 7000 

Activation function sigmoid; relu; sin; leaky_relu; tanh 
C (regularization parameter) 0.001; 0.01; 0.1; 0.3; 0.5; 0.7; 0.9; 1; 

1.3; 1.5; 2 

Random Type uniform; normal 
include False 

RF Bayes Search 

n_estimators 100; 300 
max_depth 5; 30 

min_samples_split 2; 10 
min_samples_leaf 1; 5 
max_features sqrt; log2 

XGBoost 
Randomized 

Search 

subsample 0.7; 0.8; 0.85; 0.9 
max_depth 5; 7; 9; 10; 11 
learning rate 0.001; 0.01; 0.05; 0.1 

gamma 0; 0.1; 1; 3; 5 
n_estimators 500; 900 

Table 4 presents the optimal hyperparameters used for training the predictive models. The 

selection of these configurations was based on both global and class-level performance metrics 

during the optimization process, considering Accuracy as the global metric and Precision, Recall, 

and F1-Score at the class level. Additionally, the CPU time associated with each optimal 

configuration is reported. 

Table 4. Best Hyperparameters of the Supervised Models 

Model Best Hyperparameters CPU Time 

Random Forests 
(Bayes Search) 

• max_depth: 30 
• max_features: sqrt 
• min_samples_leaf: 5 
• min_samples_split: 10 
• n_estimators: 100 

18 minutes, 32 seconds 

XGBoost 
• subsample: 0.7 
• n_estimators: 500 

2 minutes, 56 seconds 
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(Randomized 
Search) 

• max_depth: 11 
• learning_rate: 0.01 
• gamma: 3 

ELM 
(Grid Search) 

• Hidden_Units = 1000 
• Activacio n = Sigmoid 
• C = 0.1 
• random_type: normal 

1 hour, 38 minutes y 27 seconds 

With the established methodology, the final supervised models were trained to predict academic 

performance. The results obtained are presented and analyzed in Section 3. 

3. RESULTS AND DISCUSSION 

3.1. Results of the Exploratory Data Analysis (EDA) 

Distribution of Promoted and Non-Promoted Students 

Table 5 shows the distribution of promoted and non-promoted first-year basic cycle students for 

the academic years 2017–2019 and 2022–2023. The objective is to provide an overall view of 

academic performance, without segmentation by subject or term, as a starting point for more 

specific analyses. 

It can be observed that the proportion of students who were promoted to the next academic year 

is higher than that of those who were not, reflecting a generally positive overall performance. 

Table 5. Number and Percentage of Promoted and Retained Students 

Student Status Count Percentage (%) 
Promoted 560 74.5 
Retained 192 25.5 

Histograms by Subject for the First and Second Terms 

To analyze student performance in each subject, Figs. 5 and 6 present histograms showing the 

distribution of grades for the first and second terms of the academic years 2017, 2018, 2019, 2022, 

and 2023.  

 
Figure 5. Distribution of First-Term Grades 
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In the first term, different patterns were identified in the distribution of the data. Subjects such as 

Spanish Language, History, Foreign Language, Ethics and Citizenship, Biological Sciences, and 

Workshop exhibit slightly symmetric or centered distributions, with means between 6.16 and 7.13 

and medians around 6 or 7, concentrating most grades within the [6–8] range. 

In contrast, subjects such as Mathematics, Physical Chemistry, Technology, and Technical Drawing 

show positively skewed distributions, characterized by lower means (between 5.13 and 5.71) and 

first quartiles between 3 and 4, with a higher concentration of low grades (between 3 and 6), 

reflecting greater academic difficulties, particularly in Mathematics and Physical Chemistry. 

Conversely, subjects such as Art, Geography, and Physical Education exhibit negatively skewed 

distributions, with means above 6.4, third quartiles between 8 and 9, and maximum values close 

to 10, indicating generally favorable performance in these subjects. 

Finally, in some cases such as Physical Education, Workshop, and Technical Drawing, multimodal 

distributions are observed, suggesting the presence of subgroups with differentiated performance 

within the classroom. 

 
Figure 6. Distribution of Second-Term Grades 

Based on the observations of the second-term grade distributions, it can be highlighted that the 

grades once again reflect a variety of distributions and asymmetries, revealing diverse academic 

performance depending on the subject. Physical Education, Arts, Ethics and Citizenship Education, 

Geography, and Workshop exhibit negative skewness, with mean values between 6.33 and 7.30, 

medians close to 7–8, and third quartiles around 8 or 9, indicating a predominance of high grades 

and a low failure rate. Other subjects such as Language, History, Foreign Language, and Biological 

Sciences show centered distributions, with means close to 6, medians equal to 6, and interquartile 

ranges concentrated between 5 and 8, suggesting intermediate and relatively stable academic 

performance. In contrast, Mathematics, Physicochemistry, Technology, and Technical Drawing 

display positive skewness, with mean values below 5.75, first quartiles between 3 and 5, and 

greater dispersion of grades. In particular, Physicochemistry (mean = 5.15) and Technical Drawing 

(mean = 5.38) show a higher proportion of students with low academic performance. 

Furthermore, bimodality is observed in the histograms of these subjects, suggesting a clear 
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differentiation between students who successfully understand the content and those who 

experience greater learning difficulties. 

Comparison with the First Term 

Compared to the first term, a slight overall improvement is observed in several subjects, although 

certain asymmetries and dispersion persist in subjects such as Mathematics, Physicochemistry, 

and Technology. In general, grades remain concentrated between 6 and 8, with some subjects 

showing improved overall performance. The most critical subjects that continue to require special 

attention are Mathematics, Physicochemistry, and Technology, due to their higher dispersion and 

the number of students with low performance at academic risk. These patterns suggest a generally 

positive performance, even higher than that of the first term, although with characteristic 

variability. 

Multivariate Data Analysis 

This analysis examines the relationships among grades across different subjects by means of a 

correlation matrix, using aggregated data from the periods 2017–2019 and 2022–2023. The 

objective is to identify dependencies and relevant patterns that contribute to a better 

understanding of students’ academic performance. Below, the correlation matrix corresponding 

to the second quarter resented (Figure 7). 

 
Figure 7. Correlation matrix – Second quarter 

Moderately high and positive correlations are observed among Language, Foreign Language, 

History, Mathematics, Physical Chemistry, and Technology, both within these subjects and with 

other subjects, albeit with weaker and moderate correlations. This pattern suggests that students 

who perform well in one of these subjects tend to perform well in the others, possibly due to 

shared cognitive skills such as reading comprehension, logical reasoning, and analytical ability. 

During the exploratory analysis, certain outlier grades and some incomplete records were 

identified. Outliers were retained, as they correspond to actual academic results, and their removal 

could introduce bias into the analysis. In contrast, incomplete records were removed from the 
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dataset due to missing values that prevented their proper use in the applied analysis and modeling 

techniques. 

Furthermore, the target attribute of the study corresponds to the student’s Final Status, indicating 

whether the student was promoted to the next year or had to repeat the course. For use in 

supervised models, this categorical attribute was binary-encoded, assigning 1 to “Promoted” and 

0 to “Retained”. 

3.2. Results of Unsupervised Learning 

This section presents the evaluation of the K-Means and BIRCH models using the Silhouette, 

Calinski–Harabasz, and Davies–Bouldin metrics. Through numerical comparison, the model with 

the best performance is selected, and its graphical representation is analyzed to observe the 

distribution of students within the identified clusters. 

Table 6 shows the metric values for both models. 

Table 6. Clustering Metric Results 

Model Silhouette Score Calinski–Harabasz Davies Bouldin 
K-Means  0.2518 450.236 1.32 
BIRCH 0.2265 408.79 1.36 

The values listed in Table 6 indicate that both models are able to identify an interpretable 

clustering structure within the dataset. In particular, K-Means achieves higher values in the 

Silhouette coefficient (0.2518) and the Calinski–Harabasz index (450.236), suggesting greater 

internal cohesion of the clusters and better separation between the formed groups compared to 

BIRCH. Additionally, the Davies–Bouldin index shows a lower value for K-Means (1.32), indicating 

lower relative internal dispersion with respect to the nearest cluster. Considering all three metrics 

together, it is concluded that the K-Means–based model provides adequate and consistent 

clustering quality for the performed analysis. 

Discussion of Results 

Figure 8 shows the students grouped using the K-Means–based model, employing the first two 

Principal Components (PCA). The points in the plot represent the students’ grades, previously 

standardized. 

 
Figure 8. Data Clustering Using the K-Means Model 
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Based on the cluster plot in the two-dimensional space, three groups of students were identified: 

• Class 0 (Blue) – Medium Performance – 337 students: The points corresponding to this 

class are concentrated around intermediate values of PC1, which is mainly influenced by 

theoretical subjects such as Language I (10.36), History I (9.62), Physical Chemistry (8.91), 

Technology I (8.84), Geography I (8.69), and Foreign Language I (8.61). The higher 

concentration of points along PC2, dominated by practical subjects such as Physical 

Education (66.07), Workshop Preparation (23.73), and Arts (5.18), corresponds to students 

with average academic performance. 

• Class 1 (Green) – High Performance – 247 students: The points of this class are 

predominantly located in positive values of both PC1 and PC2, showing a relatively compact 

distribution. Positive PC1 values suggest excellent performance in theoretical subjects 

(Language, History, Physical Chemistry, Technology, Geography), while positive values in 

PC2 also reflect good performance in practical or physical subjects (Physical Education, 

Workshop, Arts). This group corresponds to students with superior academic performance 

and more homogeneous profiles across the evaluated subjects. 

• Class 2 (Red) – Low Performance – 191 students: The points associated with this class are 

concentrated in negative PC1 values, indicating low performance in theoretical subjects, 

with greater dispersion along PC2, reflecting variability in practical subjects. This pattern 

suggests a group of students with low academic achievement. 

In this study, the application of K-Means allowed the identification of three academic performance 

clusters (low, medium, and high) using the Elbow method, with a Silhouette coefficient of 0.2518, 

a Calinski-Harabasz index of 450.236, and a Davies–Bouldin index of 1.32. The distribution across 

clusters was 191, 337, and 247 students, respectively, ensuring a balanced and representative 

segmentation. 

Compared to recent literature, Mohamed Nafuri et al. (2022) identified five clusters using K-Means, 

but the Silhouette values (0.16–0.192) and Calinski-Harabasz indices (17.358–24.946) were 

considerably lower, indicating less separation and internal density among the groups. Meanwhile,  

Amalia et al. (2021) also reported three optimal clusters with validation metrics ranging from 

0.340–0.514 for Silhouette and 27.174–84.529 for Calinski-Harabasz; however, their datasets 

were small (20–50 samples per model), limiting cluster representativeness. These results suggest 

that the three-group segmentation in our study provides greater clarity and educational 

applicability, combining adequate separation between clusters with sufficiently large sample sizes 

for reliable analysis. 

Furthermore, the obtained structure confirms the potential of this analysis to support early 

pedagogical decisions, as it allows recognition of different academic performance levels and guides 

corrective actions before the end of the academic year. 

Appendices A2 and A3 present results of unsupervised learning using the second-year basic cycle 

dataset. 

3.3. Results of Supervised Learning 

This section presents the results obtained by the proposed models for predicting academic 

performance. 
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Classification metrics including F1-Score (Rainio et al., 2024), Precision, Recall, and Accuracy 

(Shobha & Rangaswamy, 2018) were employed to evaluate the performance of the developed 

models. These metrics provide an overall view of the prediction quality, taking into account total 

correct predictions and the balance between classification errors. 

Tables 7 and 8 show the performance of the best supervised models, both at the overall level and 

by class (Class 0: Retained; Class 1: Promoted). 

Table 7. Classification Metric Results at the Model Level 

Model Accuracy (%) 
XGBoost 89 
ELM 87 
RF 87 

Table 8. Classification Metric Results by Class 

Model Class Precision (%) F1-Score (%) Recall (%) 

XGBoost 
Retained (0) 84 80 76 

Promoted (1) 91 92 94 

ELM 
Retained (0) 82 78 74 

Promoted (1) 90 92 93 

RF 
Retained (0) 84 76 69 

Promoted (1) 88 91 95 

According to the results presented in Tables 7 and 8, the XGBoost model outperformed both 

Random Forests and ELM. Beyond the overall model capability, analyzing performance by class—

specifically considering F1-Score values—clearly shows that XGBoost achieves a balanced 

performance, with an F1-Score of 80% for the “Retained” class and 92% for the “Promoted” class. 

This indicates that it correctly identifies students in both classes, with particularly strong 

performance for the majority class. 

Compared to ELM (78% and 92%) and RF (76% and 91%), XGBoost demonstrates better balance 

and classification ability, especially for the minority class. The XGBoost model stands out as the 

most efficient, achieving the best trade-off between computational time and performance. Thus, it 

is the strongest option for predicting whether a student will be promoted to the next year. 

Additionally, Figure 9 shows the confusion matrix (Menacho Chiok, 2017) of the XGBoost model, 

selected as the best-performing model. This representation allows direct visualization of the 

distribution between observed (actual) and predicted classifications for the different categories of 

the target class, reinforcing the interpretation of the model’s behavior in identifying promoted 

students and those at risk of retention. The confusion matrix is a widely used tool in the literature 

to evaluate the classification quality of predictive models. 
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Figure 9. Confusion Matrix of the XGBoost Model 

Discussion of results 

From a pedagogical perspective, an F1-Score of 0.80 for the “Retained” class allows the model to be 

used as an early warning system, useful for guiding educational interventions before retention 

occurs, maintaining a reasonable balance between omissions and misclassifications. At the 

institutional level, this information can support targeted educational interventions, such as 

tutoring, pedagogical support, or personalized follow-up, contributing to a more efficient 

allocation of available resources. In this sense, the model does not replace teacher evaluation but 

serves as a decision-support tool, strengthening strategies to prevent school dropout and 

retention. 

The results obtained are consistent with the reviewed literature. For example, the study by Saltos-

Mero & Cruz-Felipe (2024) addressed a binary classification problem (“Pass” / “Fail”) and reported 

that their Random Forests–based model outperformed other proposed models (Decision Trees, 

Neural Networks, SVM), achieving Accuracy values of 0.86 in Economics and 0.83 in Tourism, 

confirming the effectiveness of tree-based methods for binary classification problems. 

Similarly, Guanin-Fajardo et al. (2024) evaluated XGBoost and RF on a dataset of 6,690 records 

with class balancing using EasyEnsemble and multiclass classification (Passed, Changed, Dropped 

Out). There, XGBoost achieved Accuracy = 0.7949, F1-Score = 0.8306, Precision = 0.8214, and Recall 

= 0.8425, while RF showed comparable results. Although the reported values are slightly lower 

than those in our study, the authors addressed a more complex problem with a larger dataset. 

Finally, Bellaj et al. (2024) analyzed a dataset of 480 cases, 16 attributes, and three academic 

performance levels (Low, Medium, High), applying CRISP-DM, hyperparameter optimization, and 

10-fold stratified cross-validation with GridSearchCV, which allowed them to evaluate model 

robustness across different dataset partitions. Their best models (Voting, XGBoost, and RF with 

HPO) achieved Accuracy = 0.84–0.86, F1-Score = 0.85–0.87, Precision = 0.84, and Recall = 0.84, 

confirming the effectiveness of tree-based methods even in multiclass classification. 
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Overall, the comparison indicates that, although datasets and class complexities vary, tree-based 

models, particularly XGBoost, consistently show superior performance. Moreover, the 

preprocessing and optimization techniques implemented in our study, such as feature selection, 

class imbalance handling, and Repeated K-Fold, contribute to increased robustness and reliability 

of predictions in a binary context, analogous to how cross-validation improves confidence in 

reported metrics in multiclass studies. 

Appendices A3, A4 and A5 present results of supervised learning using the second year of basic 

cycle dataset. 

CONCLUSIONS 

Based on the analysis of academic data from first-year students in the basic cycle and following 

the CRISP-DM methodology, consistent performance patterns were identified, allowing the 

characterization of differentiated academic profiles through clusters. From an educational 

perspective, these profiles can be interpreted as distinct levels of academic risk and stability, 

enabling the design of tailored pedagogical support strategies according to the needs of each 

student group. 

These findings, aligned with the study objectives, confirm the usefulness of applying data mining 

and machine learning techniques in school contexts to anticipate academic risk situations through 

predictions and guide more effective and timely pedagogical interventions. In particular, the early 

identification of students with a higher likelihood of retention allows for intervention before 

unfavorable academic trajectories are consolidated. 

As a main contribution, the results provide a solid foundation for institutional diagnosis and 

improved decision-making, demonstrating that machine learning techniques such as K-Means and 

XGBoost are suitable for classifying and predicting student performance. In this sense, the 

developed models should not be understood as automatic decision-making tools but as analytical 

support that complements pedagogical insight and teacher expertise. Additionally, they allow the 

integration of information across different levels of analysis, from general performance profiles to 

individual predictions, facilitating the planning of personalized monitoring strategies, efficient 

allocation of educational resources, and early identification of students who could benefit from 

targeted interventions. In this way, the proposed models contribute to establishing a more 

systematic, evidence-based approach to academic management, strengthening the institution's 

capacity to anticipate problems, evaluate outcomes, and design more effective educational policies. 

Opportunities for future research include expanding the sample size, incorporating socio-

emotional and contextual variables, and analyzing the impact of intervention strategies based on 

the obtained profiles. Additionally, a future line of work is the development of a web application 

integrating statistical graphics with the supervised and unsupervised models developed, enabling 

the institution to have an interactive tool for monitoring, analyzing, and managing academic 

performance, thus contributing to the construction of a more inclusive, personalized, and effective 

educational system. 

A limitation of this study is the absence of data for 2020 and 2021, a period affected by the COVID-

19 pandemic, which may have influenced the observed performance patterns. This limitation 

could be addressed once the developed solution is in production, using current cohort grades for 

continuous prediction and retraining of both supervised and unsupervised models. 
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APPENDICES 

Second-Year Basic Cycle Dataset 

Appendix A.1 presents the attributes related to the academic records of the second year of the 

basic cycle at the institution. 

Appendix A.1. Study Attributes – 2nd Year BC 

Variable Type Description 

Course Categorical Year and division of the student (e.g., 2°1°, 2°2°, etc.) 

Shift Categorical TM (Morning Shift) or TT (Afternoon Shift) 

Gender Categorical M (Male) or F (Female) 

Year Numeric Academic year (2017–2019, 2022–2023) 

Grades by 
Subject 

Numeric (Integer) Quarterly grades obtained in 14 subjects. Range (1–10) 

Final Status Categorical 
Indicates whether the student was promoted to the next 
year or not (possible values: Promoted and Repeats) 

Unsupervised Learning Results for the 2nd Year of the Basic Cycle 

A dataset of 14 attributes corresponding to student grades in the subjects of the second trimester 

of the 2nd year of the basic cycle was used, covering the periods 2017, 2018, 2019, 2022, and 2023. 

Following the pipeline shown in Figure 1, the numerical attributes were standardized, and PCA 

was applied. The first six principal components, explaining 71% of the total data variability, were 

selected and used as input features for the unsupervised models. The configuration of the models 

and the metric results are presented in Appendix A.2 and A.3, respectively. 

Appendix A.2. Model Configuration 

Model Parameters 

K-Means 

n_clusters = 3 
max_iter = 300 
n_init = 10 
random_state = 0 

BIRCH 
n_clusters = 3 
threshold = 0.05; 0.1; 0.2; 0.3; 0.4 
branching_factor = 3; 5; 10; 15; 20; 30 

Appendix A.3. Clustering Metrics Results 

Model Silhouette Score Calinski–Harabasz Davies Bouldin 

K-Means  0.238 310.11 1.355 

BIRCH 0.229 279.86 1.318 

Supervised Learning Results for the 2nd Year of the Basic Cycle 

For the construction of the models, grades from six subjects of the second trimester—Language II, 

Physics, Biological Sciences II, Art II, History II, and Preparatory Workshop II—corresponding to 

the years 2017, 2018, 2019, 2022, and 2023 of the second year of the basic cycle were used. These 

attributes were selected using the Feature Importance technique. The target variable to be 

predicted is Outcome, which takes the value 1 for Promoted and 0 for Repeats. 

Appendix A.4 shows the hyperparameter configurations of the three predictive models developed. 

Additionally, Appendix A.5 and A.6 present their performance at the model level and at the class 

level, respectively. 



 Zalasar et al. 

23                                                                               Rev. Cient. Sist. Inform. 6(1): e1212; (Jan-Jun, 2026). e-ISSN: 2709-992X 

Appendix A.4. Best Hyperparameters of the Supervised Models 

Model Best Hyperparameters CPU Time 

Random Forests 
(Bayes Search) 

• max_depth: 5 
• max_features: log2 
• min_samples_leaf: 1 
• min_samples_split: 10 
• n_estimators: 100 

15 minutes, 48 seconds 

XGBoost 
(Randomized Search) 

• subsample: 0.8 
• n_estimators: 500 
• max_depth: 9 
• learning_rate: 0.01 
• gamma: 5 

2 minutes, 25 seconds 

ELM  
(Grid Search) 

• hidden_units = 1000 
• activacio n = Sigmoid 
• C = 0.001 
• random_type: normal 

1 hour, 39 minutes 

Appendix A.5. Classification Metric Results at the Model Level 

Model Accuracy (%) 

XGBoost 87 

ELM 88 

RF 87 

Appendix A.6. Classification Metric Results at the Class Level 

Model Class Precision (%) F1-Score (%) Recall (%) 

XGBoost 
Retained (0) 84 76 70 

Promoted (1) 88 91 94 

ELM 
Retained (0) 83 75 68 

Promoted (1) 90 93 96 

RF 
Retained (0) 78 72 68 

Promoted (1) 90 92 96 

 


