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ABSTRACT

Academic performance is a key indicator for evaluating educational quality and identifying areas for
improvement in teaching and learning processes. This study analyzes a dataset of first-year lower secondary
students from an educational institution in the province of Salta, Argentina, with the aim of identifying variables
that influence student performance and supporting decision-making to mitigate low academic achievement.
Following the CRISP-DM methodology, an exploratory analysis was conducted to identify relevant patterns in
grades, unsupervised learning models were applied to detect student profiles, and supervised models were used
to predict year completion based on second-term grades. The best-performing model achieved an FI-score of
0.80 for the minority class and an overall accuracy of 89%. The results enable early identification of students at
academic risk and the segmentation of student profiles, providing valuable insights for more effective
pedagogical interventions.
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RESUMEN

El rendimiento académico es un indicador clave para evaluar la calidad educativa y detectar areas de mejora en
los procesos de ensefianza y aprendizaje. En este trabajo se analizé un conjunto de datos de estudiantes de primer
afio del ciclo basico de una instituciéon secundaria de la provincia de Salta, Argentina, con el objetivo de identificar
variables que influyen en el desempefio estudiantil y apoyar la toma de decisiones orientadas a reducir el bajo
rendimiento académico. Siguiendo la metodologia CRISP-DM, se realiz6 un andlisis exploratorio para identificar
patrones relevantes en las calificaciones, se aplicaron modelos de aprendizaje no supervisado para detectar
perfiles de estudiantes y, finalmente, modelos supervisados para predecir la aprobacién del afio a partir de las
calificaciones del segundo trimestre. El mejor modelo alcanzé un F1-Score de 0,80 en la clase minoritaria y un
accuracy del 89%. Los resultados permiten anticipar situaciones de riesgo académico y segmentar perfiles
estudiantiles, aportando informacién util para intervenciones pedagdgicas mas efectivas.
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1. INTRODUCTION

The analysis of academic performance is currently one of the fundamental issues and a major
concern that educational institutions must address. Over time, it has been studied from two main
perspectives: data related to the school as an educational system and the characteristics that
students exhibit based on their social context. However, it has not yet been possible to fully identify
and understand the variables that influence academic performance.

In the last decade, research on academic performance and student dropout has grown significantly
in Argentina. Most of these studies have focused on higher education, without providing, to date,
an integrative analysis that allows for general conclusions about the state of knowledge in the field.
A large part of the academic production on this issue has addressed academic performance
indirectly by studying variables associated with both dropout and student achievement, but
without offering a comprehensive view that integrates both aspects (Garcia, 2014).

Nevertheless, much of this research has concentrated on higher education, leaving secondary
education less explored. It is therefore necessary to also understand the specific dynamics of
secondary education, especially in regional contexts such as Salta, where socioeconomic and
school conditions pose significant challenges.

In this context, Data Mining (Ibarra, 2020) emerges as a promising tool for analyzing academic
performance with the aim of addressing various problems, such as student achievement, dropout,
and attrition. In recent years, Educational Data Mining (EDM) has shown a growing impact on the
analysis of academic performance and the identification of at-risk students, according to a recent
review (Romero & Ventura, 2020). EDM has become a useful tool for discovering relevant patterns
from educational data.

An example of this is the study conducted at the Universidad Técnica de Manabi (Saltos-Mero &
Cruz-Felipe, 2024), where the CRISP-DM methodology was applied to analyze the academic
performance of students in the “Gastronomy and Tourism” and “Economics” degree programs,
using supervised learning methods such as Decision Trees, Random Forests, Neural Networks, and
Support Vector Machines (SVM). The models were implemented in Python, and after a comparative
evaluation process, the Random Forest-based model was found to deliver the best performance,
achieving accuracy values of 83% and 86%, respectively.

Similarly, Guanin-Fajardo et al. (2024) applied the CRISP-DM methodology to predict the academic
performance of university students using a dataset of 6.690 records with academic and
socioeconomic variables. Among the evaluated methods, XGBoost achieved the best results,
reaching an AUC value of 87.75%, demonstrating high predictive capability. In addition, the model
enabled the extraction of interpretable rules from decision trees, facilitating practical application.
The study highlights the importance of implementing early predictive models to strengthen
student retention strategies. The methodology is replicable in other academic contexts and
demonstrates the value of combining accuracy with interpretability.

Finally, Bellaj et al., 2024 developed supervised learning models to predict academic performance
based on techniques such as SVM, Random Forests, XGBoost, K-NN, and Naive Bayes. The best-
performing model was XGBoost, followed by an Ensemble Voting Classifier (EVC). The authors
emphasize the importance of hyperparameter optimization to improve the accuracy of predictive
models. They also note that variables such as prior academic performance, interaction with virtual

2 Rev. Cient. Sist. Inform. 6(1): e1212; (Jan-Jun, 2026). e-ISSN: 2709-992X




Zalasar et al. R CS !

platforms, and sociodemographic factors significantly influence predictions. This work
contributes to the development of early warning systems in higher education.

The purpose of this study is to identify trends and patterns in academic performance through
Exploratory Data Analysis (EDA) (Tukey, 1977) as well as to predict student performance using
supervised learning models based on techniques such as Random Forests (Breiman, 2001),
XGBoost (Chen & Guestrin, 2016), and Extreme Learning Machine (Huang et al., 2006; Wang et al,,
2022).In addition, unsupervised learning models based on K-Means (MacQueen, 1967) and BIRCH
(Zhang et al., 1996) were used to identify groups of students with similar characteristics,
facilitating corrective measures and segmentation for timely interventions.

2. MATERIALS AND METHODS
2.1. Case Study

The present study was conducted at the Technical Secondary School No. 3100 “Republica de la
India”, located in the province of Salta, Argentina. The research followed a descriptive and
correlational approach, with a non-experimental design.

2.2. Dataset

The study was based on a dataset corresponding to the entire population of first-year students in
the basic cycle of the institution. The dataset included 787 student records covering 13 subjects
(Art, Biological Sciences, Spanish Language I, History I, Technology I, Technical Drawing, Physical
Chemistry, Foreign Language I, Ethics and Citizenship I, Geography I, Mathematics I, Preparatory
Workshop [, and Physical Education). The records span the academic years 2017, 2018, 2019,
2022, and 2023.

Table 1 presents the attributes related to the institution’s academic records, which were
considered for analyzing academic performance and detecting patterns in student grades. The
data were obtained from official institutional sources and constituted the primary data collection
instrument. Each record was associated with a student through their first name, last name, and a
unique identifier.

Table 1. Dataset Attributes

Attribute Type Description
Class Categorical Student’s grade level andectlca)ss group (e.g., 1st A, 1st B,
Shift Categorical Morning shift (TM) or afternoon shift (TT)
Gender Categorical Male (M) or Female (F)
Academic Year Numerical Academic year (2017-2019, 2022-2023)
Subject Grades Numerical (Integer) Quarterly grades obtained in 13 subjects. Range: 1-10
. . Indicates whether the student was promoted to the next
Final Status Categorical : . .
academic year (possible values: Promoted or Repeating)

Each subject is disaggregated into three separate columns corresponding to the three terms of the
academic year, identified by the suffixes “_1t”, “_2t”, and “_3t” (e.g, Mathematics_1t,
Mathematics_2t, etc.).

Appendix A1 describes the dataset related to second-year basic cycle students.

2.3. Methodology
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The CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was adopted as
the methodological framework for this study (Chapman, 2000), due to its structured and flexible
nature for Data Mining projects. This approach proposes a cyclical process composed of different
phases that enable the transformation of domain-specific objectives into analytical models with
practical value for decision-making.

First, the business understanding phase made it possible to define the research problem and
establish as the main objective the analysis of students’ academic performance, with the aim of
identifying relevant patterns in their grades. Based on these objectives, the study proceeded to the
data understanding phase, in which the available records were collected and an initial exploration
was conducted to describe their general characteristics, assess data quality, and detect potential
inconsistencies, missing values, or outliers.

Subsequently, during the data preparation phase, the final dataset to be used in the analysis was
constructed through the selection of relevant attributes and the application of data cleaning and
transformation processes, ensuring its suitability for modeling. In the modeling phase, analytical
techniques aimed at both the description and prediction of academic performance were applied,
selecting and tuning the most appropriate algorithms according to the defined objectives.

Finally, the evaluation phase allowed for the analysis of the performance and usefulness of the
obtained models, verifying their consistency with the established objectives and their contribution
as decision-support tools in the educational context. In this way, CRISP-DM provided a
comprehensive methodological framework that systematically guided the development of the
study and the generation of relevant knowledge.

Data processing, visualization, and analysis tasks, as well as the development of machine learning
models, were carried out using Python scripts and libraries such as Pandas, NumPy, Scikit-Learn,
and Matplotlib. This approach enabled a sequential and CRISP-DM-guided structure for the study.

2.4. Exploratory Data Analysis

This study relied on a set of fundamental techniques for data analysis. First, data cleaning and
transformation tasks were performed in order to prepare the information for subsequent analysis,
ensuring its consistency and suitability for the study context.

Subsequently, Exploratory Data Analysis (EDA) provided an initial approach to the structure and
quality of the records, enabling the detection of irregularities and a general understanding of the
behavior of the dataset variables.

EDA constitutes a cross-cutting stage prior to the implementation of unsupervised and supervised
learning pipelines, and its objective is to understand the data structure, detect outliers, and guide
preprocessing and modeling decisions.

2.5. Unsupervised Learning
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Figure 1. Proposed Unsupervised Learning Pipeline

Unsupervised learning (Ghahramani, 2003) was employed to identify patterns and group
observations with similar characteristics through the development of models based on techniques
such as K-Means and BIRCH. In addition, Principal Component Analysis (PCA) (Yang et al., 2018)
was used as a dimensionality reduction technique.

The complete unsupervised learning pipeline is presented in Figure 1, sequentially illustrating the
stages of the process from data extraction to cluster evaluation. As shown in the figure, the process
begins with data extraction and preprocessing, followed by dimensionality reduction for
clustering and visualization, determination of the optimal number of clusters using the Elbow
method, application of clustering techniques, and evaluation of the resulting clusters.

2.5.1. Objective of Unsupervised Learning

At this stage of the study, an analysis was conducted with the objective of identifying groups of
students with similar characteristics in their academic performance. The analysis aims to generate
valuable knowledge for early pedagogical decision-making, enabling the implementation of
corrective actions based on second-term grades before the end of the academic year.

2.5.2. Dataset and Variables Used

For this analysis, a set of 13 attributes corresponding to the numerical grades obtained by first-
year basic cycle students in different subjects during the second term was used, considering the
academic years 2017, 2018, 2019, 2022, and 2023. The attributes considered were: Art_2t,
Biological Sciences_2t, Spanish Language I_2t, History I_2t, Technology I_2t, Technical Drawing_2t,
Physical Chemistry_2t, Foreign Language I_2t, Ethics and Citizenship 1_2t, Geography I_2t,
Mathematics I_2t, Preparatory Workshop [_2t, and Physical Education_2t.

2.5.3. Data Preprocessing

A data preprocessing adjustment was performed, consisting of data standardization and the
application of PCA.
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Standardization was applied in order to mitigate the impact of extreme values, preventing
attributes with larger scales from dominating the clustering process, without removing real
observations from the dataset. Subsequently, PCA was applied to the standardized data so that all
attributes had equal importance in the projection. The first five principal components, which
explain 71% of the data variability (PC1 = 0.448; PC2 = 0.079; PC3 = 0.065; PC4 = 0.061; PC5 =
0.050), were selected, and the first two were used for visualization in a two-dimensional space.
This approach allowed a concise handling of the information contained in the 13 original attributes
and facilitated both the visualization and graphical interpretation of the resulting clusters.

2.5.4. Selection of the Number of Clusters

To determine the optimal number of clusters, the Elbow method was applied (Thorndike, 1953;
Syakur et al., 2018). As shown in Figure 2, the curve exhibits a pronounced decrease in inertia
(WCSS) up to k = 3, after which the slope becomes less steep, indicating an inflection point. Based
on this criterion, k = 3 was selected as the appropriate number of clusters.

Elbow Method
G000
000
A0
IO
20000
2 4 G B 10

Mo. of clusters

Figure 2. Application of the Elbow Method to the Dataset

2.5.5. Data Clustering

Unsupervised learning models based on the K-Means and BIRCH techniques were developed,
allowing the comparison of different methodological approaches. Both techniques were selected
due to their conceptual differences in the clustering process. K-Means is a partition-based
clustering technique widely used for numerical and standardized datasets, which produces
compact and well-defined clusters. In contrast, BIRCH is a hierarchical clustering technique that
can capture more flexible data structures, making it suitable for contrasting the results obtained
with K-Means. The comparison between both models made it possible to assess the stability and
coherence of the groupings under different methodological assumptions.

Table 2 shows the selected configuration for both models.

Table 2. Configuration of Unsupervised Models
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Model Parameters

n_clusters = 3

max_iter = 300

n_init=10

random_state = 0

n_clusters = 3

BIRCH threshold = 0.05; 0.1; 0.2; 0.3; 0.4
branching factor = 3; 5; 10; 15; 20; 30

K-Means

2.5.6. Evaluation and Interpretation

The performance of the unsupervised models was assessed using three specific clustering
evaluation metrics: the Calinski-Harabasz index (Calinski & Harabasz, 1974), the Silhouette
coefficient (Rousseeuw, 1987), and the Davies-Bouldin index (Ros et al.,, 2023). The Calinski-
Harabasz index measures the ratio between inter-cluster dispersion and intra-cluster dispersion,
where higher values indicate better clustering quality. In contrast, the Silhouette coefficient
evaluates the internal cohesion of clusters and their separation from other groups, with values
close to 1 indicating a well-defined clustering structure. Finally, the Davies-Bouldin index analyzes
the relationship between the internal dispersion of each cluster and the distance to the nearest
cluster, where lower values represent more compact and better-separated partitions. As a general
rule, values close to 0 represent very compact and well-separated clusters, values between 1 and
2 indicate moderate cohesion and separation, and values greater than 2 reflect poorly defined
clusters or significant overlap.

The methodological procedure developed made it possible to apply unsupervised learning
techniques for the identification of patterns in academic performance. The results derived from
this analysis are presented in Section 3.

2.6. Supervised Learning
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Figure 3. Proposed Supervised Learning Pipeline
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Supervised learning techniques such as Random Forests, XGBoost, and Extreme Learning Machine
were employed for the development of predictive models (Plathottam et al., 2023). The complete
supervised learning pipeline is presented in Figure 3, where the stages of the process are described
sequentially.

As shown in the figure, the process begins with data extraction and initial preprocessing.
Subsequently, feature extraction and selection are performed, followed by class balancing. Next,
the modeling stage is carried out using the selected supervised learning techniques, and finally,
model performance is evaluated using appropriate metrics, providing objective criteria to assess
their effectiveness and consistency with the defined objectives.

2.6.1. Objective of Supervised Learning

The objective of this stage is to predict whether a student will be promoted to the next academic
year using supervised learning models. To this end, predictive models based on Random Forests
(RF), XGBoost, and Extreme Learning Machine (ELM) were developed and evaluated in order to
identify students at risk at an early stage and support pedagogical decision-making.

2.6.2. Selection of attributes or features

For model construction, the attributes Gender, Academic Year, and the grades from the first and
second terms corresponding to the academic years 2017, 2018, 2019, 2022, and 2023 for first-
year basic cycle students were initially considered. These attributes were previously standardized,
as they represent a critical period for implementing interventions before the end of the academic
year.

The selected significant features correspond to second-term grades from six subjects: History [_2T,
Spanish Language I_2T, Technical Drawing_ 2T, Technology I_2T, Mathematics I_2T, and Foreign
Language [_2T, for the academic years 2017, 2018, 2019, 2022, and 2023. These features were
selected using the Feature Importance technique (Breiman, 2001), obtained from a Random Forest
model trained with 250 decision trees. Importance values were computed for all available
attributes, and only the six second-term subjects with the highest contribution to academic
performance prediction were retained. The selection focused on the second term, as it provides
more recent information about student performance and enables predictive decision-making
before the beginning of the third term. Figure 4 illustrates the application of this technique and the
relative contribution of each attribute.
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Figure 4. Application of Feature Importance
2.6.3. Class Balancing

Given that the dataset exhibited a strong class imbalance, with a significant majority of promoted
students compared to a smaller proportion of retained students, the Tomek Links technique was
applied (Leng et al., 2024). This method identifies pairs of instances from different classes that are
mutual nearest neighbors and removes those belonging to the majority class (in this case,
promoted students).

As a result, the majority class was reduced from 574 to 554 instances, while the minority class
remained unchanged. This slight reduction helped mitigate class imbalance, promoting more
balanced learning in the supervised models and contributing to improved predictive performance
for the minority class, without removing critical information from the majority class.

Data augmentation techniques were not employed, as only real academic data were used and
generating synthetic observations was deemed inappropriate. The creation of synthetic data could
introduce artificial grade values, potentially affecting both the pedagogical validity of the results
and the reliability of the model predictions.

2.6.4. Data Splitting (Train/Test Split)

The data were split by allocating 75% of the dataset for training and 25% for testing the predictive
models.

2.6.5. Validation Strategy (Repeated K-Fold)

In order to ensure robust validation and minimize the risk of overfitting, the Repeated K-Fold
Cross-Validation technique was applied (Kohavi, 2001) with the following configuration:

e n_splits: 10 (number of splits)
e n_repeats: 10 (number of repetitions)
e random_state: 42 (seed value to ensure reproducibility)
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This technique was chosen over alternatives such as simple K-Fold or Stratified K-Fold because it
provides a more stable estimation of model performance by reducing metric variability across
different dataset partitions. Each observation participates in multiple training and validation sets,
ensuring a more comprehensive analysis of model behavior across the entire dataset and
improving the reliability of hyperparameter selection and the reported final performance. The
Repeated K-Fold configuration is suitable for a dataset with fewer than 1000 samples, balancing
the stability of supervised model performance metrics and the computational cost of model
training.

2.6.6. Hyperparameter Optimization

In order to obtain the best possible models, hyperparameter optimization techniques were
employed to improve performance and adaptability. Specifically, Grid Search (Belete & Huchaiah,
2022; Ogunsanya et al. 2023), Randomized Search (Breiman, 2001) and BayesSearch (Snoek et al.,
2012) were used, as these approaches offer different strategies for exploring the configuration
space and selecting those that maximize model quality.

Table 3 presents the specific values tested for each hyperparameter.

Table 3. Techniques and Hyperparameter Values (Martinez et al., 2025)

ML Model Technique Hyperparameters Values
Number of neurons in hidden layers 1000; 2000; 3000; 4000; 5000;
6000; 7000
Activation function sigmoid; relu; sin; leaky_relu; tanh
ELM Grid Search C (regularization parameter) 0.001; 0.01; 0.1; 0.3; 0.5; 0.7; 0.9; 1;
1.3;1.5;2
Random Type uniform; normal
include False
n_estimators 100; 300
max_depth 5; 30
RF Bayes Search min_samples_split 2;10
min_samples_leaf 1;5
max_features sqrt; log2
subsample 0.7; 0.8; 0.85; 0.9
Randomized max_depth 5;7;9;10; 11
XGBoost Search learning rate 0.001; 0.01; 0.05; 0.1
gamma 0;0.1;1; 3;5
n_estimators 500; 900

Table 4 presents the optimal hyperparameters used for training the predictive models. The
selection of these configurations was based on both global and class-level performance metrics
during the optimization process, considering Accuracy as the global metric and Precision, Recall,
and F1-Score at the class level. Additionally, the CPU time associated with each optimal
configuration is reported.

Table 4. Best Hyperparameters of the Supervised Models

Model Best Hyperparameters CPU Time
max_depth: 30
max_features: sqrt
min_samples_leaf: 5 18 minutes, 32 seconds
min_samples_split: 10
n_estimators: 100
subsample: 0.7
n_estimators: 500

Random Forests
(Bayes Search)

XGBoost 2 minutes, 56 seconds
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(Randomized e max_depth: 11
Search) e learning rate: 0.01
e gamma: 3
e Hidden_Units = 1000
(Gri(fgglarch) : écztlz)/icmn = Sigmoid 1 hour, 38 minutes y 27 seconds
e random_type: normal

With the established methodology, the final supervised models were trained to predict academic
performance. The results obtained are presented and analyzed in Section 3.

3. RESULTS AND DISCUSSION

3.1. Results of the Exploratory Data Analysis (EDA)

Distribution of Promoted and Non-Promoted Students

Table 5 shows the distribution of promoted and non-promoted first-year basic cycle students for
the academic years 2017-2019 and 2022-2023. The objective is to provide an overall view of
academic performance, without segmentation by subject or term, as a starting point for more
specific analyses.

It can be observed that the proportion of students who were promoted to the next academic year
is higher than that of those who were not, reflecting a generally positive overall performance.

Table 5. Number and Percentage of Promoted and Retained Students

Student Status Count Percentage (%)
Promoted 560 74.5
Retained 192 25.5

Histograms by Subject for the First and Second Terms

To analyze student performance in each subject, Figs. 5 and 6 present histograms showing the
distribution of grades for the first and second terms of the academic years 2017, 2018, 2019, 2022,
and 2023.
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Figure 5. Distribution of First-Term Grades
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In the first term, different patterns were identified in the distribution of the data. Subjects such as
Spanish Language, History, Foreign Language, Ethics and Citizenship, Biological Sciences, and
Workshop exhibit slightly symmetric or centered distributions, with means between 6.16 and 7.13
and medians around 6 or 7, concentrating most grades within the [6-8] range.

In contrast, subjects such as Mathematics, Physical Chemistry, Technology, and Technical Drawing
show positively skewed distributions, characterized by lower means (between 5.13 and 5.71) and
first quartiles between 3 and 4, with a higher concentration of low grades (between 3 and 6),
reflecting greater academic difficulties, particularly in Mathematics and Physical Chemistry.

Conversely, subjects such as Art, Geography, and Physical Education exhibit negatively skewed
distributions, with means above 6.4, third quartiles between 8 and 9, and maximum values close
to 10, indicating generally favorable performance in these subjects.

Finally, in some cases such as Physical Education, Workshop, and Technical Drawing, multimodal
distributions are observed, suggesting the presence of subgroups with differentiated performance
within the classroom.
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Figure 6. Distribution of Second-Term Grades

Based on the observations of the second-term grade distributions, it can be highlighted that the
grades once again reflect a variety of distributions and asymmetries, revealing diverse academic
performance depending on the subject. Physical Education, Arts, Ethics and Citizenship Education,
Geography, and Workshop exhibit negative skewness, with mean values between 6.33 and 7.30,
medians close to 7-8, and third quartiles around 8 or 9, indicating a predominance of high grades
and a low failure rate. Other subjects such as Language, History, Foreign Language, and Biological
Sciences show centered distributions, with means close to 6, medians equal to 6, and interquartile
ranges concentrated between 5 and 8, suggesting intermediate and relatively stable academic
performance. In contrast, Mathematics, Physicochemistry, Technology, and Technical Drawing
display positive skewness, with mean values below 5.75, first quartiles between 3 and 5, and
greater dispersion of grades. In particular, Physicochemistry (mean = 5.15) and Technical Drawing
(mean = 5.38) show a higher proportion of students with low academic performance.
Furthermore, bimodality is observed in the histograms of these subjects, suggesting a clear
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differentiation between students who successfully understand the content and those who
experience greater learning difficulties.

Comparison with the First Term

Compared to the first term, a slight overall improvement is observed in several subjects, although
certain asymmetries and dispersion persist in subjects such as Mathematics, Physicochemistry,
and Technology. In general, grades remain concentrated between 6 and 8, with some subjects
showing improved overall performance. The most critical subjects that continue to require special
attention are Mathematics, Physicochemistry, and Technology, due to their higher dispersion and
the number of students with low performance at academic risk. These patterns suggest a generally
positive performance, even higher than that of the first term, although with characteristic
variability.

Multivariate Data Analysis

This analysis examines the relationships among grades across different subjects by means of a
correlation matrix, using aggregated data from the periods 2017-2019 and 2022-2023. The
objective is to identify dependencies and relevant patterns that contribute to a better
understanding of students’ academic performance. Below, the correlation matrix corresponding
to the second quarter resented (Figure 7).
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Figure 7. Correlation matrix - Second quarter

Moderately high and positive correlations are observed among Language, Foreign Language,
History, Mathematics, Physical Chemistry, and Technology, both within these subjects and with
other subjects, albeit with weaker and moderate correlations. This pattern suggests that students
who perform well in one of these subjects tend to perform well in the others, possibly due to
shared cognitive skills such as reading comprehension, logical reasoning, and analytical ability.

During the exploratory analysis, certain outlier grades and some incomplete records were
identified. Outliers were retained, as they correspond to actual academic results, and their removal
could introduce bias into the analysis. In contrast, incomplete records were removed from the
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dataset due to missing values that prevented their proper use in the applied analysis and modeling
techniques.

Furthermore, the target attribute of the study corresponds to the student’s Final Status, indicating
whether the student was promoted to the next year or had to repeat the course. For use in
supervised models, this categorical attribute was binary-encoded, assigning 1 to “Promoted” and
0 to “Retained”.

3.2. Results of Unsupervised Learning

This section presents the evaluation of the K-Means and BIRCH models using the Silhouette,
Calinski-Harabasz, and Davies-Bouldin metrics. Through numerical comparison, the model with
the best performance is selected, and its graphical representation is analyzed to observe the
distribution of students within the identified clusters.

Table 6 shows the metric values for both models.

Table 6. Clustering Metric Results

Model Silhouette Score Calinski-Harabasz Davies Bouldin
K-Means 0.2518 450.236 1.32
BIRCH 0.2265 408.79 1.36

The values listed in Table 6 indicate that both models are able to identify an interpretable
clustering structure within the dataset. In particular, K-Means achieves higher values in the
Silhouette coefficient (0.2518) and the Calinski-Harabasz index (450.236), suggesting greater
internal cohesion of the clusters and better separation between the formed groups compared to
BIRCH. Additionally, the Davies-Bouldin index shows a lower value for K-Means (1.32), indicating
lower relative internal dispersion with respect to the nearest cluster. Considering all three metrics
together, it is concluded that the K-Means-based model provides adequate and consistent
clustering quality for the performed analysis.

Discussion of Results

Figure 8 shows the students grouped using the K-Means-based model, employing the first two
Principal Components (PCA). The points in the plot represent the students’ grades, previously
standardized.

Clustering of Students with K-means on PCA

Main component 2
h

-4

Main component 1

Figure 8. Data Clustering Using the K-Means Model
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Based on the cluster plot in the two-dimensional space, three groups of students were identified:

e (lass 0 (Blue) - Medium Performance - 337 students: The points corresponding to this
class are concentrated around intermediate values of PC1, which is mainly influenced by
theoretical subjects such as Language 1 (10.36), History I (9.62), Physical Chemistry (8.91),
Technology 1 (8.84), Geography I (8.69), and Foreign Language [ (8.61). The higher
concentration of points along PC2, dominated by practical subjects such as Physical
Education (66.07), Workshop Preparation (23.73), and Arts (5.18), corresponds to students
with average academic performance.

e C(lass 1 (Green) - High Performance - 247 students: The points of this class are
predominantly located in positive values of both PC1 and PC2, showing a relatively compact
distribution. Positive PC1 values suggest excellent performance in theoretical subjects
(Language, History, Physical Chemistry, Technology, Geography), while positive values in
PC2 also reflect good performance in practical or physical subjects (Physical Education,
Workshop, Arts). This group corresponds to students with superior academic performance
and more homogeneous profiles across the evaluated subjects.

e (lass 2 (Red) - Low Performance - 191 students: The points associated with this class are
concentrated in negative PC1 values, indicating low performance in theoretical subjects,
with greater dispersion along PC2, reflecting variability in practical subjects. This pattern
suggests a group of students with low academic achievement.

In this study, the application of K-Means allowed the identification of three academic performance
clusters (low, medium, and high) using the Elbow method, with a Silhouette coefficient of 0.2518,
a Calinski-Harabasz index of 450.236, and a Davies-Bouldin index of 1.32. The distribution across
clusters was 191, 337, and 247 students, respectively, ensuring a balanced and representative
segmentation.

Compared to recent literature, Mohamed Nafuri et al. (2022) identified five clusters using K-Means,
but the Silhouette values (0.16-0.192) and Calinski-Harabasz indices (17.358-24.946) were
considerably lower; indicating less separation and internal density among the groups. Meanwhile,
Amalia et al. (2021) also reported three optimal clusters with validation metrics ranging from
0.340-0.514 for Silhouette and 27.174-84.529 for Calinski-Harabasz; however, their datasets
were small (20-50 samples per model), limiting cluster representativeness. These results suggest
that the three-group segmentation in our study provides greater clarity and educational
applicability, combining adequate separation between clusters with sufficiently large sample sizes
for reliable analysis.

Furthermore, the obtained structure confirms the potential of this analysis to support early
pedagogical decisions, as it allows recognition of different academic performance levels and guides
corrective actions before the end of the academic year.

Appendices A2 and A3 present results of unsupervised learning using the second-year basic cycle
dataset.

3.3. Results of Supervised Learning

This section presents the results obtained by the proposed models for predicting academic
performance.
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Classification metrics including F1-Score (Rainio et al.,, 2024), Precision, Recall, and Accuracy
(Shobha & Rangaswamy, 2018) were employed to evaluate the performance of the developed
models. These metrics provide an overall view of the prediction quality, taking into account total
correct predictions and the balance between classification errors.

Tables 7 and 8 show the performance of the best supervised models, both at the overall level and
by class (Class 0: Retained; Class 1: Promoted).

Table 7. Classification Metric Results at the Model Level

Model Accuracy (%)
XGBoost 89
ELM 87
RF 87

Table 8. Classification Metric Results by Class

Model Class Precision (%) F1-Score (%) Recall (%)
Retained (0) 84 80 76
XGBoost Promoted (1) 91 92 94
ELM Retained (0) 82 78 74
Promoted (1) 90 92 93
RF Retained (0) 84 76 69
Promoted (1) 88 91 95

According to the results presented in Tables 7 and 8, the XGBoost model outperformed both
Random Forests and ELM. Beyond the overall model capability, analyzing performance by class—
specifically considering F1-Score values—clearly shows that XGBoost achieves a balanced
performance, with an F1-Score of 80% for the “Retained” class and 92% for the “Promoted” class.
This indicates that it correctly identifies students in both classes, with particularly strong
performance for the majority class.

Compared to ELM (78% and 92%) and RF (76% and 91%), XGBoost demonstrates better balance
and classification ability, especially for the minority class. The XGBoost model stands out as the
most efficient, achieving the best trade-off between computational time and performance. Thus, it
is the strongest option for predicting whether a student will be promoted to the next year.

Additionally, Figure 9 shows the confusion matrix (Menacho Chiok, 2017) of the XGBoost model,
selected as the best-performing model. This representation allows direct visualization of the
distribution between observed (actual) and predicted classifications for the different categories of
the target class, reinforcing the interpretation of the model’s behavior in identifying promoted
students and those at risk of retention. The confusion matrix is a widely used tool in the literature
to evaluate the classification quality of predictive models.
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Confusion Matrix - XGBoost Model
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Figure 9. Confusion Matrix of the XGBoost Model

Discussion of results

From a pedagogical perspective, an F1-Score of 0.80 for the “Retained” class allows the model to be
used as an early warning system, useful for guiding educational interventions before retention
occurs, maintaining a reasonable balance between omissions and misclassifications. At the
institutional level, this information can support targeted educational interventions, such as
tutoring, pedagogical support, or personalized follow-up, contributing to a more efficient
allocation of available resources. In this sense, the model does not replace teacher evaluation but
serves as a decision-support tool, strengthening strategies to prevent school dropout and
retention.

The results obtained are consistent with the reviewed literature. For example, the study by Saltos-
Mero & Cruz-Felipe (2024) addressed a binary classification problem (“Pass” / “Fail”) and reported
that their Random Forests-based model outperformed other proposed models (Decision Trees,
Neural Networks, SVM), achieving Accuracy values of 0.86 in Economics and 0.83 in Tourism,
confirming the effectiveness of tree-based methods for binary classification problems.

Similarly, Guanin-Fajardo et al. (2024) evaluated XGBoost and RF on a dataset of 6,690 records
with class balancing using EasyEnsemble and multiclass classification (Passed, Changed, Dropped
Out). There, XGBoost achieved Accuracy = 0.7949, F1-Score = 0.8306, Precision = 0.8214, and Recall
= 0.8425, while RF showed comparable results. Although the reported values are slightly lower
than those in our study, the authors addressed a more complex problem with a larger dataset.

Finally, Bellaj et al. (2024) analyzed a dataset of 480 cases, 16 attributes, and three academic
performance levels (Low, Medium, High), applying CRISP-DM, hyperparameter optimization, and
10-fold stratified cross-validation with GridSearchCV, which allowed them to evaluate model
robustness across different dataset partitions. Their best models (Voting, XGBoost, and RF with
HPO) achieved Accuracy = 0.84-0.86, F1-Score = 0.85-0.87, Precision = 0.84, and Recall = 0.84,
confirming the effectiveness of tree-based methods even in multiclass classification.
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Overall, the comparison indicates that, although datasets and class complexities vary, tree-based
models, particularly XGBoost, consistently show superior performance. Moreover, the
preprocessing and optimization techniques implemented in our study, such as feature selection,
class imbalance handling, and Repeated K-Fold, contribute to increased robustness and reliability
of predictions in a binary context, analogous to how cross-validation improves confidence in
reported metrics in multiclass studies.

Appendices A3, A4 and A5 present results of supervised learning using the second year of basic
cycle dataset.

CONCLUSIONS

Based on the analysis of academic data from first-year students in the basic cycle and following
the CRISP-DM methodology, consistent performance patterns were identified, allowing the
characterization of differentiated academic profiles through clusters. From an educational
perspective, these profiles can be interpreted as distinct levels of academic risk and stability,
enabling the design of tailored pedagogical support strategies according to the needs of each
student group.

These findings, aligned with the study objectives, confirm the usefulness of applying data mining
and machine learning techniques in school contexts to anticipate academic risk situations through
predictions and guide more effective and timely pedagogical interventions. In particular, the early
identification of students with a higher likelihood of retention allows for intervention before
unfavorable academic trajectories are consolidated.

As a main contribution, the results provide a solid foundation for institutional diagnosis and
improved decision-making, demonstrating that machine learning techniques such as K-Means and
XGBoost are suitable for classifying and predicting student performance. In this sense, the
developed models should not be understood as automatic decision-making tools but as analytical
support that complements pedagogical insight and teacher expertise. Additionally, they allow the
integration of information across different levels of analysis, from general performance profiles to
individual predictions, facilitating the planning of personalized monitoring strategies, efficient
allocation of educational resources, and early identification of students who could benefit from
targeted interventions. In this way, the proposed models contribute to establishing a more
systematic, evidence-based approach to academic management, strengthening the institution's
capacity to anticipate problems, evaluate outcomes, and design more effective educational policies.

Opportunities for future research include expanding the sample size, incorporating socio-
emotional and contextual variables, and analyzing the impact of intervention strategies based on
the obtained profiles. Additionally, a future line of work is the development of a web application
integrating statistical graphics with the supervised and unsupervised models developed, enabling
the institution to have an interactive tool for monitoring, analyzing, and managing academic
performance, thus contributing to the construction of a more inclusive, personalized, and effective
educational system.

A limitation of this study is the absence of data for 2020 and 2021, a period affected by the COVID-
19 pandemic, which may have influenced the observed performance patterns. This limitation
could be addressed once the developed solution is in production, using current cohort grades for
continuous prediction and retraining of both supervised and unsupervised models.
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APPENDICES
Second-Year Basic Cycle Dataset

Appendix A.1 presents the attributes related to the academic records of the second year of the
basic cycle at the institution.

Appendix A.1. Study Attributes - 2nd Year BC

Variable Type Description
Course Categorical Year and division of the student (e.g., 2°1°, 2°2°, etc.)
Shift Categorical TM (Morning Shift) or TT (Afternoon Shift)
Gender Categorical M (Male) or F (Female)

Year Numeric Academic year (2017-2019, 2022-2023)
G;i(lj)?sc?y Numeric (Integer) Quarterly grades obtained in 14 subjects. Range (1-10)
Final Status Catecorical Indicates whether the student was promoted to the next

5 year or not (possible values: Promoted and Repeats)

Unsupervised Learning Results for the 2nd Year of the Basic Cycle

A dataset of 14 attributes corresponding to student grades in the subjects of the second trimester
of the 2nd year of the basic cycle was used, covering the periods 2017,2018, 2019, 2022, and 2023.

Following the pipeline shown in Figure 1, the numerical attributes were standardized, and PCA
was applied. The first six principal components, explaining 71% of the total data variability, were
selected and used as input features for the unsupervised models. The configuration of the models
and the metric results are presented in Appendix A.2 and A.3, respectively.

Appendix A.2. Model Configuration

Model Parameters

n_clusters = 3

max_iter = 300

n_init =10

random_state = 0

n_clusters = 3

BIRCH threshold = 0.05; 0.1; 0.2; 0.3; 0.4
branching factor = 3; 5; 10; 15; 20; 30

K-Means

Appendix A.3. Clustering Metrics Results

Model Silhouette Score Calinski-Harabasz Davies Bouldin
K-Means 0.238 310.11 1.355
BIRCH 0.229 279.86 1.318

Supervised Learning Results for the 2nd Year of the Basic Cycle

For the construction of the models, grades from six subjects of the second trimester—Language I,
Physics, Biological Sciences II, Art II, History II, and Preparatory Workshop II—corresponding to
the years 2017, 2018, 2019, 2022, and 2023 of the second year of the basic cycle were used. These
attributes were selected using the Feature Importance technique. The target variable to be
predicted is Outcome, which takes the value 1 for Promoted and 0 for Repeats.

Appendix A.4 shows the hyperparameter configurations of the three predictive models developed.
Additionally, Appendix A.5 and A.6 present their performance at the model level and at the class
level, respectively.
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Appendix A.4. Best Hyperparameters of the Supervised Models

RCSI

Model

Best Hyperparameters

CPU Time

e random_type: normal

e max_depth: 5
e max_features: log2
R(a];a d(;;nsle?g::;)t S e min_samples_leaf: 1 15 minutes, 48 seconds
Y e min_samples_split: 10

e n_estimators: 100
e subsample: 0.8
e n_estimators: 500

(Ran d())(r(r;l]is;(;(c)isstearch) e max_depth: 9 2 minutes, 25 seconds
e learning rate: 0.01
e gamma: 5
e hidden_units = 1000

ELM e activacién = Sigmoid .
(Grid Search) e C=0.001 1 hour, 39 minutes

Appendix A.5. Classification Metric Results at the Model Level

Model Accuracy (%)
XGBoost 87
ELM 88
RF 87

Appendix A.6. Classification Metric Results at the Class Level

Model Class Precision (%) F1-Score (%) Recall (%)
Retained (0) 84 76 70
XGBoost Promoted (1) 88 91 94
ELM Retained (0) 83 75 68
Promoted (1) 90 93 96
RF Retained (0) 78 72 68
Promoted (1) 90 92 96
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